Violympic toán 7

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Cho S = \(\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\). Chứng minh rằng s không phải là số nguyên

@Nguyễn Văn Đạt nhờ a nha

Nguyên Dương
14 tháng 2 2020 lúc 16:58

\(Ta\) \(có\) :

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+\frac{4^2-1}{4^2}+...+\frac{100^2-1}{100^2}\)

\(=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)

\(Đặt\) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Do A > 0 nên S < 99 (1)

Do A\(=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(A< 1-\frac{1}{100}\)

Suy ra \(S=99-A>99-\left(1-\frac{1}{100}\right)\)

\(\Rightarrow S>98+\frac{1}{100}\Rightarrow S>98\) (2)

Lập luận ra điều phải chứng minh

Khách vãng lai đã xóa
Vũ Minh Tuấn
14 tháng 2 2020 lúc 17:32

\(S=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(\Rightarrow S=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(\Rightarrow S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{10000}\)

\(\Rightarrow S=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(\Rightarrow S=99-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)< 99.\)

\(\Rightarrow S< 99\) (1).

Đặt \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\)

\(\Rightarrow A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

Ta có:

\(\left\{{}\begin{matrix}\frac{1}{2^2}< \frac{1}{1.2}\\\frac{1}{3^2}< \frac{1}{2.3}\\....\\\frac{1}{100^2}< \frac{1}{99.100}\end{matrix}\right.\)

\(\Rightarrow A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\Rightarrow A< 1-\frac{1}{100}\)

\(1-\frac{1}{100}< 1.\)

\(\Rightarrow A< 1.\)

\(\Rightarrow S>99-1\)

\(\Rightarrow S>98\) (2).

Từ (1) và (2) \(\Rightarrow98< S< 99.\)

\(\Rightarrow S\) không phải là số nguyên (đpcm).

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Đức Vương Hiền
Xem chi tiết
Rosie
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Trúc Giang
Xem chi tiết
Trần Quốc Tuấn hi
Xem chi tiết
Khoa Dang
Xem chi tiết
Limited Edition
Xem chi tiết