Ta có : đenta' = (-m)2 - (m+1)(m-1)
= m2-(m2-1)
=m2-m2 +1
=1 >0
==> phương trình luôn có 2 nghiệm phân biệt với mọi m khác 1
Ta có : đenta' = (-m)2 - (m+1)(m-1)
= m2-(m2-1)
=m2-m2 +1
=1 >0
==> phương trình luôn có 2 nghiệm phân biệt với mọi m khác 1
Cho phương trình: x2 - 2(m - 1)x - 3 = 0 (1)
CMR pt (1) luôn có 2 nghiệm phân biệt x1, x2 với mọi giá trị m. Tìm m thoả mãn:
\(\dfrac{x_1}{x^2_2}+\dfrac{x_2}{x^2_1}=m-1\)
1:cho phương trình : x2 -2mx+m2-m-3=0
a, tìm m để phương trình có 2 nghiệm trái dấu
b, tìm m để phương trình có 2 nghiệm phân biệt dương
câu 2: cho pt: x2+(2m-1)x-m=0
a, chứng tỏ rằng pt luôn có 2 nghiệm với mọi m
b, Tìm m để pt có 2 nghiệm x1,x2 TM x1-x2=1
Cho phương trình \(x^2-2\left(2m-1\right)x+3m^2-4=0\)(1)
a) Giai PT (1) khi m= -1
b) CMR pt (1) luôn có 2 nghiệm phân biệt với mọi m
c) Gọi x1,x2 là 2 nghiệm của (1) Tìm m để x1+2.x2=-2
cho phương trình : \(x^2+\left(4m-1\right)x+2\left(m-4\right)=0\) (ẩn x)
a) CMR : phương trình luôn có 2 nghiệm phân biệt với mọi m
b) tìm m để pt có 2 nghiệm thỏa mãn : | x1 - x2 |= 17
Cho pt : x2 - mx + m - 3 = 0 . CMR pt luôn có 2 nghiệm phân biệt với mọi m
Cho phương trình x2 - 2(m + 1)x + m - 4 = 0
a) Chứng minh rằng phương trình luôn có 2 nghiệm phân biệt với mọi m ( phần này không cần làm nhen)
Gọi x1 , x2 là 2 nghiệm của phương trình. d/ CMR biểu thức M = x1(1 - x2) + x2(1 - x1) không phụ thuộc vào m
cho pt: x2-2(m+1)x+2m-5=0
1) tìm m để phương trình (1) có 1 nghiệm x= 2 tìm nghiệm còn lại.
2) Chứng tỏ rằng phương trình luôn có hai nghiệm phân biệt với mọi m . tìm m m để x1 , x2 thỏa mãn x12+(2m+2)x2 -7 = 0
giúp em với mai em thi rồi.
cách làm nào sai
cho pt x^2-mx+m-1=0 tìm m để pt có 2 nghiệm phân biệt
c1: có a+b+c =1-m+m-1=0 nên pt luôn có 2 nghiệm phân biệt vói mọi m
c2: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0 <=> m>2 kl...
c3: có a=1 khác 0 nên pt là pt bậc 2 1 ẩn để pt có 2 nghiệm phân biệt delta>0 <=> (m-2)^2 >0( luôn đúng với mọi m) kl...
`mx^2 -2(m+1)x+1-3m=0`
1. CMR: PT đã cho luôn có nghiệm với mọi m
2. Với x khác 0, `x_1 ;x_2` là 2 nghiệm phân biệt của PT. Tìm min \(x_1^2+x_2^2\)