Đặt :
\(x^2=t\) => t >0
Phương trình tương đương :
\(t^2+2mt+4=0\) (*)
Để phương trình trên co 4 nghiệm phân biệt thì (*) phải có 2 nghiệm dương
=>| Điều kiện :
\(\Delta'=m-4>0\)
\(\Rightarrow m>4\)
Theo hệ thức Vi-ét :
\(\left\{{}\begin{matrix}x_1+x_2+x_3+x_4=-\dfrac{b}{a}=0\\x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4=\dfrac{c}{a}=m\\x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=-\dfrac{d}{a}=0\\x_1x_2x_3x_4=\dfrac{e}{a}=4\end{matrix}\right.\)
Mũ 4 phương trình đầu tiên lên rồi áp vào
\(x_1^4+x_2^4+x_3^4+x^4_4=32\) , sử dụng các phương trình bên dưới nữa để giải ra m là được