Violympic toán 9

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Machiko Kayoko

Cho phương trình:\(x^4+2mx^2+4=0\left(1\right)\) tìm gí trị của m để pt có 4 nghiệm phân biệt \(x^4_1+x^4_2+x^4_3+x^4_4=32\)

Ánh Lê
23 tháng 2 2019 lúc 19:55

Đặt :

\(x^2=t\) => t >0

Phương trình tương đương :

\(t^2+2mt+4=0\) (*)

Để phương trình trên co 4 nghiệm phân biệt thì (*) phải có 2 nghiệm dương

=>| Điều kiện :

\(\Delta'=m-4>0\)

\(\Rightarrow m>4\)

Theo hệ thức Vi-ét :

\(\left\{{}\begin{matrix}x_1+x_2+x_3+x_4=-\dfrac{b}{a}=0\\x_1x_2+x_1x_3+x_1x_4+x_2x_3+x_2x_4=\dfrac{c}{a}=m\\x_1x_2x_3+x_1x_2x_4+x_1x_3x_4+x_2x_3x_4=-\dfrac{d}{a}=0\\x_1x_2x_3x_4=\dfrac{e}{a}=4\end{matrix}\right.\)

Mũ 4 phương trình đầu tiên lên rồi áp vào

\(x_1^4+x_2^4+x_3^4+x^4_4=32\) , sử dụng các phương trình bên dưới nữa để giải ra m là được


Các câu hỏi tương tự
Ánh Dương
Xem chi tiết
Hương Giang
Xem chi tiết
Big City Boy
Xem chi tiết
Anh Pha
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Big City Boy
Xem chi tiết
Nguyễn Thế Hiếu
Xem chi tiết
nguyen ngoc son
Xem chi tiết