Δ=(2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3=(2m-1)^2+3>0
=>Phương trình có hai nghiệm pb
x1<1<x2
=>x2-1>0 và x1-1<0
=>(x1-1)(x2-1)<0
=>x1x2-(x1+x2)+1<0
=>m-1-2m+1<0
=>-m<0
=>m>0
Δ=(2m)^2-4(m-1)
=4m^2-4m+4
=4m^2-4m+1+3=(2m-1)^2+3>0
=>Phương trình có hai nghiệm pb
x1<1<x2
=>x2-1>0 và x1-1<0
=>(x1-1)(x2-1)<0
=>x1x2-(x1+x2)+1<0
=>m-1-2m+1<0
=>-m<0
=>m>0
Cho phương trình x^2 - 2mx - 1 = 0. Tìm m để phương trình trên có 2 nghiệm x1 , x2 thỏa mãn hệ thức:
a. x1^2 + x2^2 - x1.x2 = 7
b. x1 - x2 = 0
Cho phương trình x2 - x -m +1 = 0 với m là tham số
1) Tìm m để phương trình có nghiệm kép. Tìm nghiệm kép đó
2) Tìm m để phương trình có hai nghiệm x1 , x 2 thoả mãn 2x1 + x2 = 5
Bài 2: Cho phương trình x2- 2(m+2)x – 2m - 5 = 0 (1) a) Giải phương trình (1) khi m=2 b) Tìm m để phương trình (1) có hai nghiệm phân biệt x1, X2 thoả mãn: |x1-x2| = 2
Câu 1: Cho phương trình: : x2 – 2mx - 10 = 0
a) Giải phương trình khi m = 1
b) Tìm giá trị của tham số m để phương trình x2 – 2mx + 10 = 0 có hai nghiệm phân
biệt \(x1\), \(x2\) thỏa mãn \(x1^2\) + \(x2^2\) = 29
Cho phương trình: x2 – (2m+1)x + m2 + m -2 = 0 (1) (m là tham số). Tìm m để phương trình (1) có 2 nghiệm phân biệt x1, x2 thoả mãn:
x1(x1 -2x2) + x2(x2 -3x1) = 9
cho phương trình x2-2mx+2m-2=0 với m là tham số. tìm giá trị của phương trình đã cho có hai nghiệm x1 x2 thoả mãn x1+ 3x2 = 6
tìm m để phương trình x^2-2mx+m-1=0 có 2 nghiệm thỏa mãn x1<1<x2
cho phương trình x^2-(2m-1)x +m^2-m =0 . tìm m để phương trình có 2 nghiệm phân biệt x1;x2 thoả mãn |x1 -2x| bé hơn hoặc bằng 5
Cho phương trình (ẩn x) : x 2 – 2mx – 4m – 4 = 0(1)
b) Tìm m để phương trình (1) có 2 nghiệm x 1 , x 2 thỏa mãn x 1 2 + x 2 2 - x 1 x 2 = 13 = 13