\(\Delta'=\left(m+3\right)^2-m^2-3=6m+6\ge0\Rightarrow m\ge-1\)
Khi đó, pt có 2 nghiệm thỏa: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+3\right)\\x_1x_2=m^2+3\end{matrix}\right.\)
\(A=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+3\right)^2-2\left(m^2+3\right)\)
\(A=2m^2+24m+30\)
Ta có: \(\left\{{}\begin{matrix}x_1-x_2=6\\x_1+x_2=2m+6\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_1=m+6\\x_2=m\end{matrix}\right.\)
Mà \(x_1x_2=m^2+3\Leftrightarrow m\left(m+6\right)=m^2+3\Rightarrow6m=3\Rightarrow m=\frac{1}{2}\)