Cho phương trình bậc hai: \(x^2+2\left(a+3\right)x+4\left(a+3\right)=0\)
a, Với giá trị nào của tham số a, phương trình có nghiệm kép. Tính các nghiệm kép.
b, Xác định a để phương trình có hai nghiệm phân biệt lớn hơn -1
Cho phương trình bậc 2: (m - 1)x2 - 2mx + m + 1 = 0.
a) Tìm m, biết phương trình có nghiệm x = 0.
b) Xác định giá trị của m để phương trình có tích 2 nghiệm bằng 5, từ đó hãy tính tổng 2 nghiệm của phương trình.
Cho phương trìn x^2-(3m-1)x+2m^2+2m=0 (1)
a) giải phương trình với m = 1
b) tìm giá trị của m để pt (1) có 2 nghiệm phân biệt x1, x2 sao cho \(\left|x_1-x^{ }_2\right|=2\)
cho phương trình\(x^2-\left(2m+1\right)x+m^2-m=0\) tìm các giá tri của m để phương trình có hai nghiệm phân biệt x1,x2 thỏa mãn điều kiện:\(\left(x_1^2+mx_1+x_2-m^2+m\right)\left(x_2^2+mx_2+x_1-m^2+m\right)=-9\)
Tìm tham số m để phương trình sau có đúng 2 nghiệm phân biệt: \(x^3-\left(1+m\right)x^2+\left(m-1\right)x+2m-2=0\)
tìm m để phương trình \(x^2+\left(2-m\right)x+m-3=0\) có hai nghiệm phân biệt thỏa mãn \(\left|x_1\right|+x_2^2=2\)
: Cho phương trình: x2 – 5x + m = 0 (m là tham số).
a) Giải phương trình trên khi m = 6.
b) Tìm m để phương trình trên có hai nghiệm x1, x2 thỏa mãn: \(\left|x_1-x_2\right|=3\).
Cho phương trình: -(m+4)x + 3m +3=0 (x là ẩn số) a) Chứng minh phương trình đã cho luôn có nghiệm với mọi gia trị của m b) Tính tổng và tích hai nghiệm của phương trình c) Tìm m để phương trình có hai nghiệm x1,x2 thỏa mãn: - x1 = x2 - + 8
cho phương trình \(a\left|x+2\right|+a\left|x-1\right|=b\). tìm hệ thức giữa a và b để phương trình có 2 nghiệm khác nhau
Cho phương trình ẩn x: x2 – x + 1 + m = 0 (1)
a) Giải phương trình đã cho với m = 0.
b) Tìm các giá trị của m để phương trình (1) có hai nghiệm x1, x2 thỏa mãn: x1x2.( x1x2 – 2 ) = 3( x1 + x2 ).