\(\Delta=9-4\left(m+4\right)=-7-4m\ge0\Rightarrow m\le-\frac{7}{4}\)
Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m+4\end{matrix}\right.\)
\(x_1^2+x_2^2+15=\left(x_1x_2\right)^2\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+15-\left(x_1x_2\right)^2=0\)
\(\Leftrightarrow9-2\left(m+4\right)+15-\left(m+4\right)^2=0\)
\(\Leftrightarrow\left(m+4\right)^2+2\left(m+4\right)-24=0\) \(\Rightarrow\left[{}\begin{matrix}m+4=4\\m+4=-6\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=0\\m=-10\left(l\right)\end{matrix}\right.\)
