\(x^2-\left(2m+1\right)x+m^2+2=0\)
\(\Delta=\left[-\left(2m+1\right)\right]^2-4m^2-8=4m^2+4m+1-4m^2-8=4m-7\)
Để phương trình có 2 nghiệm x1, x2 thì: \(\Delta\ge0\Leftrightarrow4m-7\ge0\Leftrightarrow m\ge\frac{7}{4}\).
Theo vi ét ta có: \(\hept{\begin{cases}x_1+x_2=2m+1\\x_1.x_2=m^2+2\end{cases}}\)
Kết hợp với đề bài ta có hệ: \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Giải (1) và (3) ta được: \(\hept{\begin{cases}x_1=4m-2\\x_2=3-2m\end{cases}}\)Thay vào (2) ta được:
\(m^2+2=\left(4m-2\right)\left(3-2m\right)=16m-8m^2-6\)
\(\Leftrightarrow9m^2-16m+8=0\left(4\right)\)
Mà \(9m^2-16m+8=\left(3m-\frac{8}{3}\right)^2+\frac{8}{9}\ge\frac{8}{9}\forall m\)
\(\Rightarrow\)Phương trình (4) vô nghiệm.
Không có m thỏa mãn.
Chỗ kết hợp với đề bài mình đánh thiếu \(\hept{\begin{cases}x_1+x_2=2m+1\left(1\right)\\x_1.x_2=m^2+2\left(2\right)\\x_1+2x_2=4\left(3\right)\end{cases}}\)
Đệt nó éo hiện -_-.
Thêm x1+2x2=4 (3) vào nhé.