\(\text{p là số nguyên tố lớn hơn 3 nên p = 3k + 1 hoặc p = 3k + 2 (k}\in\text{N*)}\)
- Nếu p = 3k + 1 thì \(p^2+2009=\left(3k+1\right)^2+2009=9k^2+1+2009=9k^2+2010=3.\left(3k^2+670\right)\), là hợp số
- Nếu p = 3k + 2 thì \(p^2+2009=\left(3k+4\right)^2+2009=9k^2+4+2009=9k^2+2013=3.\left(3k^2+671\right)\), là hợp số.
Kết luận : p2 + 2009 là hợp số.
p là số nguyên tố > 3 => p lẻ => p2 lẻ => p2 + 2009 = lẻ + lẻ = chẵn => p2 + 2009 là hợp số
p là số nguyên tố lớn hơn 3=>p=2k+1=>p2=2q+1
=>p2+2009=2q+1+2009=2q+2010=2(q+1005) chia hết cho 2
=>p2+2009 là hợp số
vậy p2+2009 là hợp số