Cho đường tròn (O, R) và các tiếp tuyến AB, AC cắt nhau tại A nằm ngoài đường tròn (B, C là các tiếp điểm). Gọi H là giao điểm của BC và OA.
a, C/m OA vuông góc với BC và OH.OA= R2
b, Kẻ đường kính BD và đường thẳng CK vuông góc với BD tại K. C/m OA//CD và AC.CD=CK.AO
c, Gọi I là giao điểm của AD và CK. C/m tam giác BIK và tam giác CHK có diện tích bằng nhau
cho đường tròn (o;R) và một điểm A sao cho Oa=2R vẽ tiếp tuyến AB với đường tròn tâm o (b là tiếp tuyến ) vẽ dây Bc của đường tròn tâm o vuông góc với OA tại H
a) tính Ab theo R và chứng minh Ac là tiếp tuyến của đường tròn tâm O
b) c/m tam giác abc là tam giác đều
c) trên tia đối của tia BC lấy điểm Q. từ Q vẽ 2 tiếp tuyến QD vad QE của đường tròn tâm O ( D và E là 2 tiếp tuyến ). C/M 2 điểm A,E,D thẳng hàng
Từ điểm A nằm ngoài đường tròn (O;R) với OA > 2R, kẻ các tiếp tuyến AB, AC của đường tròn (O) (B, C là các tiếp điểm). Vẽ đường kính BD của đường tròn (O) ; AD cắt đường tròn (O) tại E ( E khác D).
a) Chứng minh: OA ⊥ BC tại H và 4 điểm A, B, O, C cùng thuộc đường tròn.
b) Chứng minh: CD // OA và AH.AO = AE.AD
c) Gọi I là trung điểm của HA. Chứng minh ABI = BDH
Cho đường tròn (O,R) .từ điểm A nằm ngoài đường tròn kẻ hai tiếp tuyến AB và AC với đường tròn (B,C là tiếp điểm).AO cắt BC tại H a)cm 4 điểm A,B,O,C cùng thuộc đường tròn b) cm OA vuông góc BC tại H c) cho OA=2R .tính chu vi tam giác ABC theo R d) vẽ cát tuyến AMN với đường tròn.xác định vị trí của cát tuyến AMN sao cho nhỏ nhất .
cho đường tròn (O,R) và điểm A sao cho OA = 2R. Từ A , vẽ AB tiếp xúc với (O) với B là tiếp điểm. Kẻ đường kính BC của (O). Gọi M là trung điểm của đoạn thẳng OB, kẻ MN vuông góc với AC tại N.
a) chứng minh tứ giác ABMN nội tiếp.
b) kẻ BH vuông góc với OA tại H. Cho R= 3cm. Tính số đo góc BOA và độ dài đoạn BH
c) đường thẳng vuông góc với OA tại O cắt tia AB tại E. Chứng minh ba điểm E,M,N, thẳng hàng
ừ điểm A nằm ngoài đường tròn (O), kẻ 2 tiếp tuyến AB, AC đến đường tròn (O)
(B, C là 2 tiếp điểm).
a) Chứng minh: Bốn điểm O, B, A, C cùng thuộc 1 đường tròn và BC OA tại H.
b) Kẻ đường kính BD của đường tròn (O). Qua C vẽ đường thẳng vuông góc với AB,
đường thẳng này cắt OA tại E. Chứng minh: CD // OA và tứ giác OBEC là hình thoi.
c) Qua E vẽ đường thẳng a bất kỳ cắt đoạn thẳng AC. Lần lượt vẽ OM, DN, CP vuông
góc với đường thẳng a tại M, N, P. Chứng minh: DN = OM + CP.
Cho đường tròn (O;R) và một điểm A ở ngoài đường tròn. Kẻ tiếp tuyến AB với đường tròn (O) (B là tiếp điểm). Qua B kẻ BH vuông góc với OA cắt đường tròn tại C.
a, Giả sử R = 6 cm, OA = 10 cm. Tính độ dài OH và góc BAO (làm tròn đến độ)
b, Chứng minh rằng AC là tiếp tuyến của (O)
c, Vẽ đường kính BD của (O). Gọi K là hình chiếu của C trên BD. Chứng minh AC.CD = CK.AO
d, AD cắt CK tại I. Chứng minh rằng I là trung điểm của CK.
Cho đường tròn(O;R) dây AB=r√3 qua O kẻ đường vuông góc với AB tại H cắt tiếp tuyến tại A của đường tròn (O) tại điểm M a/Chứng minh tam giác OMB là tam giác vuông và từ đó suy ra MB là tiếp tuyến b/Vẽ đường kính BC của đường tròn(O).chứng minh AC vuông góc AB c/Tính diện tích tứ giác MAOB theo R
cho điểm A nằm ngoài đường tròn tâm O bán kình R từ A kẻ hai tiếp tuyến AB, Ac với đường tròn tâm o ( b, C là tiếp điểm)
a) giả sử R=15 và OA = 25 hãy tính AB
b) c/m oa vuông góc với bc tại K
c) kẻ đường kính CD của đường tròn tâm o gọi P là giao điểm của AC và DB. C/M Ap=AC
d) kẻ BH vuông góc với cd tại H gọi I là giao điểm của BN và AD. C/m Sabd=2Sabd là diện tích tam giác BCD; Scdb là diện tích tam giác CID