Cho (O;R) và dây AB<2R. Lấy M và N thuộc dây AB sao cho AM=MN=NB. Các tia OM, ON cắt (O) tại C và D.
a) Chứng minh AC=BD
b) So sánh AC và CD
Cho đường tròn O,R) , đường kính ab vuông góc với dây cung MN tại điểm H (H nằm giữa O và B ).Trên tia đối của tia NM lấy điểm C sao cho đoạn AC cắt (O) tại K khác A.Hai dây MN và BK cắt nhau ở E
a) Chứng minh tứ giác AHEK nội tiết
b) Qua N kẻ đường thẳng vuông góc với AC cắt tia AC cắt tia MK tại F.Chứng minh tam giác NFK cân và EM*NC=EN*CM
Cho (O;R) có đường kính AB vuông góc với dây cung MN tại H(Hnằm giữa O và B) trên tia MN lấy điểm C nằm ngoài đường tròn(O;R) sao cho đoạn thẳng AC cắt đường tròn (O;R) tại điểm K khác A,2 dây MN và BK cắt nhau ở E
a) Chứng minh AHEK là tứ giác nội tiếp
) Từ điểm A ở ngoài (O; R) vẽ hai tiếp tuyến AB và AC đến (O; R), ( với B, C là các tiếp điểm ). Kẻ đường kính BD của (O; R). Tia AO cắt dây BC tại H. a) Chứng minh OA là trung trực của đoạn thẳng BC và OA // CD b) AD cắt (O; R) tại E (E khác D). Chứng minh BED vuông và AC2 = AE . AD c) Chứng minh: 𝑂𝐻𝐷 ̂ = 𝑂𝐷𝐴
Cho đường tròn (O;R) đường kính AB, dây CD cắt đường kính AB tại điểm E (E khác A và B). Tiếp tuyến d của đường tròn tại B cắt các tia AC, AD lần lượt tại M và N
a) Chứng minh AC.AM = AD.AN = AB^2.
b) Gọi I là trung điểm của BM, chứng minh CI là tiếp tuyến của đường tròn (O).
c) Kẻ CH vuông góc AB, K là trung điểm CH. Chứng minh A,I,K thẳng hàng.
Cho đường tròn (O), một đường kính AB cố định, một điểm I nằm giữa A và O sao cho AI = 1/2.AO (AI = AO/2). Kẻ dây MN vuông góc với AB tại I. Gọi C là điểm tùy ý thuộc cung lớn MN, sao cho C không trùng với M,N và B. Nối AC cắt MN tại E. a) Chứng minh tứ giác IECB nội tiếp được trong đường tròn. b) Chứng minh AM^2 = AE.AC c) Hãy xác định ví trí điểm C sao cho khoảng cách từ N đến tâm đường tròn ngoại tiếp tam giác CME là nhỏ nhất.
Cho đường tròn (O;R), đường kính AB vuông góc với dây cung MN tại H (H nằm giữa O và B). Trên tia đối NM lấy điểm C nằm ngoài đường tròn (O;R) sao cho đoạn thẳng AC cắt đương tròn tại k khác A. Hai day MN và BK cắt nhau ở E. Qua N kẻ đường thẳng vuông góc với AC cắt tia MK tại F.
a) Chứng minh tứ giác AHEK nội tiếp.
b) Chứng minh tam giác NFK cân và EM. NC = EN. CM.
c) Giả sử KE = KC. Chứng minh OK// MN và KM2 + KN2 = 4R2
Cho (O) bán kính R. Lấy A ở ngoài (O) sao cho OA = 3R. Từ A kẻ tiếp tuyến AB, AC với (O) (B, C là tiếp điểm). Từ B kẻ đường thẳng song song với AC cắt (O) tại M. Gọi N là giao điểm của AM với (O). Kẻ OI vuông góc MN tại I. Tia BN cắt AC tại D và AO tại E. (Mình đã chứng minh O, A, C, I thuộc 1 đtròn và CD\(^2\) = DN.DB)
Chứng minh: D là trung điểm AC, tính độ dài AE theo R