Cho (O;R) có hai dây cung AB và CD vuông góc với nhau tại I ( C thuộc cung nhỏ AB). Kẻ đường kính BE của (O). Chứng minh
a, AC=DE
b, IA^2+IB^2+IC^2+ID^2=4R^2
c, AB^2+CD^2=8R^2−4OI^2
tứ giác ABCD nội tiếp đường tròn (O) vẽ dây DM // AB a) cm góc ADM = góc BCD b) cm AM = BD c) giả sử AC vuông góc BD tai I c/m IA^2 +IB^2 + IC^2 +ID^2 =4R^2
cho đường tròn tâm O bán kính R , M nằm ở miền trong của đương tròn. Qua M kẻ 2 dây cung AB và CD vuông góc với nhau tại M . I,K là TĐ của AB, CD. CM:
A,Khi AB,CD quay quanh M thì TK luoon đi qua 1 điểm cối định
b. MA^2+MB^2+MC^2+MD^2=4R^2
c,AB^2+CD^2 ko dổi khi dây AB,CD thay đổi và luôn vuông góc với nhau
2 Cho nửa đường tròn tâm O bán kính R và dây cung CD ( C,D cùng thuộc 1 nửa mặt phẳng bờ AB).H,K lần lượt là chân đg vuông góc hạ từA,B đến CD
a,CM: Sahkb=Sacb+Sadb
b,Tính Sahkb biết AB=20cm,CD=12cm và CD tạo với AB 1 góc bằng 30 độ
3. Cho tam giác ABC nội tiếp trong đường tròn tâm O bán kính R có góc A bé hơn 90 đọ. Trên cung BC ko chứa điểm A lấy M bất kỳ. D,E theo thứ tự là điểm đối xứng của M với AB và AC. tìm M để DE co độ dài lớn nnhaat
5,từ 1 điêm P nằm ở ngoài đường tròn (O),kẻ 2 tiếp tuyến PA,PB của (O) vs AB là các tiếp điểm. M là giao điểm của OP và AB. Kẻ dây cung CD đi qua M ( CD ko Qu O). 2 tiếp tuyến của đg tròn tại C và D cắt nhau tại Q. tính góc OPQ
7,Cho tam giác ABC và trực tâm H nằm trong tam giác đó. P là điểm nằm trên cung nhỏ BC của đường tròn ngoại tiếp tam giác ABC.E là chân đường cao hạ từ B đến AC. Dựng các HBH : PAQB và PADC, QA cắt HD tại F. CM:È song song vs AP.
nhờ các bạn ssieeu toán giải hộ mình với! thanks nhiều
Cho đường tròn (O) đường kính AB. Vẽ dây CD không qua tâm vuông góc với AB tại I (A thuộc cung nhỏ CD) biết CD=16cm ; IA=6cm. Tính bán kính của (O;R)
Cho đường tròn(O;R) và điểm M nằm ở miền trong đường tròn. Qua M kẻ hai dây cung AB và CD vuông góc với nhau tại M. Chứng minh:
a)MA^2 + MB^2 + MC^2 +MD^2=4R^2
b)Tổng AB^2 + CD^2 khi các dây AB và CD thay đổi và luôn vuông góc với nhau tại M
Cho (O; R) 2 dây AB và CD vuông góc với nhau tại I, C thuộc cung nhỏ AB. Kẻ đkinh BE của (O)
a, CMR AC = DE
b, CMR IA2 + IB2 + IC2 + ID2 = 4R2
Cho (O), đường kính AB. Lấy H nằm giữa O và B, kẻ dây CD vuông góc với AB tại H. Trên cung nhỏ AC lấy E, Kẻ CK vuông góc với AE tại K. DE cắt CK tại F
a) c/m tg AHCK nội tiếp
b) c/m HK//DE
c) c/m AF^2=AH.AB
Cho điểm I nằm trong (O;R), kẻ hai dây AB,CD và AB\(\perp\)CD tại I
CMR:a,AI.IB=IC.ID
b,\(\widehat{BAD}=\frac{1}{2}\widehat{BOD}\)
c,IA2+IB2+IC2+ID2=4R2
Cho điểm I nằm trong (O;R), kẻ hai dây AB,CD và AB\(\perp\)CD tại I
CMR:a,AI.IB=IC.ID
b,\(\widehat{BAD}=\frac{1}{2}\widehat{BOD}\)
c,IA2+IB2+IC2+ID2=4R2