Cho nửa đường tròn ( O ) với đường kính là AB và C là điểm chính giữa cũng AB. Trên cung AC lấy điểm M tùy ý, đường thẳng AM cắt đường thẳng BC tại D. a) C/minh: góc DMC = gíc ABC b) Trên tia BM lấy điểm N sao cho BN = AM C/minh: MC = NC
Cho đường tròn (O;R), lần lượt đặt theo một chiều kể từ A các cung \(\stackrel\frown{AB},\stackrel\frown{BC,}\stackrel\frown{CD}\) sao cho \(sđ\stackrel\frown{AB}=60^0,sđ\stackrel\frown{BC}=90^0,sđ\stackrel\frown{CD}=120^0\). CMR:
a) ABCD là hình thang cân
b) \(AC\perp BD\)
c) Gọi M, N lần lượt là trung điểm của CD, AB. Trên tia đối tia AD lấy P, gọi Q là giao điểm của PN và DB. CMR: MN là phân giác của góc \(\widehat{PMQ}\).
: Cho đường tròn (O) bán kính R và một dây BC cố định. Gọi A là điểm chính giữa của cung nhỏ BC. Lấy điểm M trên cung nhỏ AC, kẻ tia Bx vuông góc với tia MA ở I và cắt tia CM tại D.
1) Chứng minh AMD=ABC và MA là tia phân giác của góc BMD.
2) Chứng minh A là tâm đường tròn ngoại tiếp tam giác BCD và góc BDC có độ lớn không phụ thuộc vào vị trí điểm M.
Giúp mik với :((( Cho đường tròn tâm O bán kính R và hai đường kính AB, CD vuông góc với nhau. Điểm M bất kì thuộc cung nhỏ BC (với M khác B và C). Gọi I là giao điểm của AM và BC, J là hình chiếu của I trên AB. Chứng minh rằng: a) Tứ giác BMIJ là tứ giác nội tiếp b) JI là phân giác của góc CJM c) J, M, D thẳng hàng
Nếu đc thì các bạn vẽ hình giúp mik với ;-;
Mik cảm ơn ;-;
Cho (O,R) đường kính AB, dây AC không đi qua tâm. Gọi H là trung điểm AC
a, Chứng minh OH//BC
b,Tiếp tuyến tại C (O) cắt OH tại M. Chứng minh MA là tiếp tuyến của đường tròn tâm O
c, Vẽ CK vuông góc với AB tại K. GỌi I là trung điểm của CK, đặt góc BAC = góc anfa. Chứng minh IK=R.sin anfa. cos anfa
d, Chứng minh 3 điểm M,I,B thẳng hàng
Ai giúp mình ý d vs ạ !
Cho nửa đường tròn (O) đk AB . C là điểm chính giữa cung AB . M là 1 điểm di chuyển trên cung BC . Trên tia AM đặt A sao cho AN = BM .
a. CM: CM=CN và tam giác CMN cân
b . Gọi H là hình chiếu của C trên AM . CM: OH là tia phân giác của góc COM.
c. Qua AN, kẻ đt (d) vuông góc với AM . CMR: Khi M di chuyển trên cung BC thì đt (d) luôn đi qua 1 điểm cố định
HELP ME !!!
Cho đường tròn tâm (O) đường kính AB. Gọi M là điểm thuộc cung AB (M≠≠A, M≠≠B) và I là điểm thuộc đoạn OA (I≠≠A, I≠≠O). Trên nửa mặt phẳng bờ AB có chứa điểm M, kẻ các tia tiếp tuyến Ax, By với đường tròn (O). Qua M kẻ đường thẳng vuông góc với IM, đường thẳng này cắt Ax, By lần lượt tại C,D. Gọi M là giao điểm của AM với IC, F là giao điểm của BM với ID. Chứng minh rằng:
a, Tứ giác MIEF là tư giác nội tiếp.
b, EF song song vớiAB.
c,OM là tiếp tuyến chung của đươnmg tròn ngoại tiếp tam giác CEM và DFM
Cho đường tròn tâm O .Kẻ đường kính AB và CD vuông góc với nhau . Gọi E là điểm chính giữa cung nhỏ CD .EA cắt CD tại F ;ED cắt AB tại M
a/ Các tam giác CEF và EMB là những tam giác gì ?
b/ chứng minh bốn điểm D , C, M ,B thuộc đường tròn tâm E .