cho hình vuông ABCD có độ dài cạnh là a. Gọi M,N lần lượt là trung điểm của AB và BC .Các đường thẳng DN và CM cắt nhau tại I. Chứng minh rằng
a. tam giác CIN vuông
b. Tính diện tích tam giác CIN theo a
c. Tam giác AID cân
Cho (O),dây AB cố định không đi qua tâm O.đường kính CD vuông góc với AB tại H (C thuộc cung lớn AB) điểm M di chuyên trên cung nhỏ AC (M khác A và M khác C).CM cắt AB tại N nối DM cắt AB tại E a chứng minh tứ giác CMEH nội tiếp b chứng minh NM.NC=NA.NB
Cho nữa đường tròn (O) đường kính AB=2R . Điểm M di chuyển trên nữa đường tròn (M khác A, B). C là tiếp điểm của dây cung AM. Đường thẳng d là tiếp tuyến với nữa đường tròn tại B. Tia AM cắt d tại N. Đường thẳng OC giao d tại E
a )CM: OCNB nội tiếp
b )CM: AC .AN=AO. AB
c) CM:NO vuông goc AE
d )tìm M để 2.AM +AN min
Cho tam giác ABC vuông cân tại A. TRêm BC lấy M. Từ M kẻ ME vuông góc AB tại E, MF vuông góc AC tại F.
a, CM khi M di chuyển trên BC thì đường thẳng qua M và vuông góc với EF luôn đi qua 1 điểm cố định D
b. Xác định vị trí M trên BC để diện tích tam giác DEF đạt min
Cho đường tròn (O,R) và một dây BC cố định không đi qua O. Từ một điểm A bất kì trên tia đối của tia BC vẽ các tiếp tuyến Am,AN với đường tròn. Gọi Í là trung điểm của dây BC, đường thẳng MI cắt đường tròn (O) tại điểm thứ hai là P. Gọi giao điểm của MN với OI là K. Xác định vị trí của A trên tia đối của tia BC để tam giác ONK có diện tích lớn nhất
Câu hỏi
Cho đường tròn tâm O đường kính AB=2R và E là điểm bất kì trên đường tròn đó (E khác A và B). Đường phân giác góc AEB cắt đoạn thẳng AB tại F và cắt đường tròn (O) tại điểm thứ hai K khác A.
2.Gọi I là giao điểm của đường trung trực đoạn EF với OE. Chứng minh rằng đường tròn (I; IE) tiếp xúc với đường tròn (O) tại E và tiếp xúc với đường thẳng AB tại F.
Ở câu 2 em thấy lời giải là : Ta có I là giao điểm của đường trung trực d của đoạn thẳng EF với OE (gt) nên O,I,E thẳng hàng . Ai có thể giải thích rõ hơn cho em vs đc k ạ
Bài 1:
Cho hình thang cân ABCD (AD//CB) có AB = 12cm, AC = 16cm, BC = 20cm
C/m: A, B, C, D thuộc một đường tròn, tính bán kính của đường tròn đó
Bài 2:
Cho hình thang cân ABCD (AB//CD)
C/m: A, B, C, D thuộc một đường tròn
Bài 3:
a) Cho (O) với 2 đường kính AB và CD bất kì. C/m ABCD là hình chữ nhật
b) Cho (O) với 2 đường kính AB và CD vuông góc với nhau.. C/m ABCD là hình vuông
Bài 4:
Cho (O) đường kính MN, I thuôc OM, K thuộc ON. Qua I, K vẽ các dây AB và CD vuông góc với MN
a) C/m MN là đường trung trực của AB và CD
b) C/m ABCD là hình thang cân
Bài 5:
Cho (O) đường kính AB, M, N thuộc (O) sao cho AM = BN và M, N nằm trên 2 nửa đường tròn khác nhau. C/m: MN là đường kính của (O)
Bài 6:
Cho tam giác ABC, AQ, KB, CI là 3 đường cao, H là trực tâm.
a) C/m: A,B,Q,K thuộc một đường tròn. Xác định tâm của đường tròn
b) C/m: A,I,H,K thuộc một đường tròn. Xác định tâm của đường tròn
giúp mn câu d
Cho (O;R), điểm M nằm ngoài (O) sao cho OM = 2R. Đường thẳng d qua M cắt (O) tại A và B. Tiếp tuyến tại A và B cắt nhau tại C.
a, Chứng minh 4 điểm A,B,C,O thuộc một đường tròn, xác định tâm và bán kính của đường tròn đó
b, Chứng minh CO vuông góc với AB
c, Gọi giao điểm của CO và AB là I. Từ C kẻ CH vuông góc với MO ( H \(\in\) MO), chứng minh : OI .OC = OH . OM = \(R^2\)
d, Chứng minh khi d quay quanh M và cắt (O) tại 2 điểm phân biệt thì C chạy trên một đường tròn cố định
Cho O là trung điểm của AB. Trên 1 nửa mặt phẳng bờ AB vẽ Ax ⊥ AB, By ⊥ AG. Qua O vẽ tia Oz cắt Ax tại M sao cho góc AOM = a <90 độ, . Qua O vẽ tia OM ⊥ Oz , Om cắt By t ại N
Xác định để S OMN lớn nhất