cho nửa đường tròn ( O;R) đường kính AB. M là điểm trên nửa đường tròn. Tiếp tuyến tại M cắt các tiếp tuyến tại A và B ở C và D. Chứng minh:
a, CD= AC+ BD và tam giác COD vuông
b, AC.BD = R^2
c, AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn (O) đường kính AB. Trên cùng nửa mặt phẳng bờ AB vẽ hai tiếp tuyến Ax, By. Điểm M nằm trên (O) sao cho tiếp tuyến tại M cắt Ax, By tại D và C. Chứng minh:
a, AD + BC = CD
b, C O D ^ = 90 0
c, AC.BD = O A 2
d, AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn tâm O đường kính AB và M là điểm nằm trên (O). Tiếp tuyến tại M cắt tiếp tuyến tại A và B của (O) lần lượt ở C và D. Đường thẳng AM cắt OC tại E, đường thẳng BM cắt OD tại F
a, Chứng minh: C O D ^ = 90 0
b, Tứ giác MEOF là hình gì?
c, Chứng minh AB là tiếp tuyến của đường tròn đường kính CD
Cho nửa đường tròn (O;R), đường kính AB. Kẻ các tiếp tuyến Ax và By với nửa đường tròn. Tiếp tuyến tại một điểm M trên nửa đường tròn cắt Ax tại C và By tại D. Chứng minh
a) CD = CA + DB và góc COD = \(90^0\)
b) AB là tiếp tuyến của đường tròn đường kính CD
c) Dọi N là giao điểm của AD và BC. Chứng minh MN vuông góc với AB
Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng
phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với
đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh: OC AM và AM // OD;
b) Chứng minh: AC.BD = R2
c) Chứng minh: AB là tiếp tuyến đường tròn đường kính CD;
d) Gọi K là giao điểm của AD và BC. Chứng minh MK AB;
e) Tìm vị trí điểm M sao cho diện tích tứ giác ACDB nhỏ nhất.
Cho nửa đường tròn tâm O bán kính R, đường kính AB. Kẻ các tiếp tuyến Ax, By cùng
phía với nửa đường tròn đối với AB. Từ điểm M trên nửa đường tròn kẻ tiếp tuyến thứ ba với
đường tròn, tiếp tuyến này cắt Ax và By lần lượt tại C và D.
a) Chứng minh: OC AM và AM // OD;
b) Chứng minh: AC.BD = R2
c) Chứng minh: AB là tiếp tuyến đường tròn đường kính CD;
d) Gọi K là giao điểm của AD và BC. Chứng minh MK AB;
e) Tìm vị trí điểm M sao cho diện tích tứ giác ACDB nhỏ nhất.
Cho đường tròn tâm ( O ) đường kính AB. Kẻ tiếp tuyến của nửa đường tròn. Qua điểm M bất kì thuộc đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C, D. Chứng minh rằng:
a) ∠COD = 90 độ
b) CD = AC + BD
c) Tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
Cho đường tròn tâm ( O ) đường kính AB. Kẻ tiếp tuyến của nửa đường tròn. Qua điểm M bất kì thuộc đường tròn ( M khác A và B ) kẻ tiếp tuyến với nửa đường tròn cắt Ax, By thứ tự tại C, D. Chứng minh rằng:
a) ∠COD = 90 độ
b) CD = AC + BD
c) Tích AC.BD không đổi khi M di chuyển trên nửa đường tròn
Cho nửa đường tròn (O;R) có AB là đường kính. Vẽ các tiếp tuyến Ax, By của nửa đường tròn (O;R). Trên nửa đường tròn lấy điểm M sao cho MA < MB. Tiếp tuyến tại M của nửa đường tròn (O;R) cắt Ax tại C, cắt By tại D.
a/ Chứng minh CD = AC + BD
b/ Chứng minh góc COD= 90o và AC.BD=R2
c/ Đường thẳng BM cắt Ax tại N. Đường thẳng AM cắt ON tại E và cắt OC tại H. Đường thẳng NH cắt AB tại F. Gọi K là giao điểm của OC và EF. Chứng minh NA2=MN.NB và KE = KF