cho nủa đường tròn (o,R) dduongf kính ab . lấy 1 điểm c thuộc nửa đường tròn sao cho ca<cb kẻ ch vuông góc vs ab . trên cùng một nửa mặt phẳng bờ ab chứa nửa cắt ca tại tròn vẽ 2 nửa đường tròn tâm o1 đường kính ah o2 đường kính HB (o1) cắt ca tại e (o2) cắt cb tại F
a) chứng minh tứ giác CEHF là hình chữ nhật
Cho nửa đường tròn đường kính AB =2R . Lấy điểm C trên nửa (O) với CA > CB Kẻ CH vuông góc AB Kẻ đường tròn tâm K đường kính CH cắt AC, BC lần lượt tại D và E , nó cắt nửa (O) tại F CMR a, CH = DE b, CA . CD = CB CE và tứ giác ABED nội tiếp
Cho đường tròn (O;R) đường kính AB. Điểm C thuộc đường tròn sao cho AC>CB, C khác A và B. Kẻ CH vuông góc với AB tại H, kẻ OI vuông góc với AC tại I, kẻ tiếp tuyến Ax của đường tròn (O;R), tia OI cắt Ax tại M. Gọi giao điểm BM với CH là K. Chứng minh tam giác AMO đồng dạng với tam giác HCB và KC=KH
Cho nửa đường tròn tâm O đường kính AB,điểm C thuộc nữa đường tròn(CA>CB).Kẻ bán kính OI vuông góc với AB,cắt dây AC tại D.Gọi d là tiếp tuyến tại C của nửa đường tròn.Đường thẳng qua D và song song với AB cắt d ở E.Chứng minh rằng:
a) Tứ giác BCDO nội tiếp.
b)AC//OE
c)Gọi H là chân đường cao hạ từ C xuống AB.Hãy tìm vị trí của C để HD vuông góc với AC.
Cho nửa đường trong tâm O đường kính AB; trên nửa đuòng tròn lấy điểm C (cung BC nhỏ hơn cung AC), qua C dựng tiếp tuyến với đường tròn O cắt AB tại D. Kẻ CH vuông góc với AB (H thuộc AB), kẻ BK vvuoong góc với CD ( K thuộc CD); CH cắt BK tại E.
a) Chứng minh: CB là phân giác của góc DCE
b) Chứng minh: CK + BD < EC
c) Chứng minh: BH. AD = AH, BD
Cho đường trồn tâm O đường kính AB. Trên đường tròn tâm O lấy điểm C ( C không trùng với A,B và CA > CB) các tiếp tuyến của đường tròn O tại A và C cắt nhau ở điểm D kẻ CH vuông góc với AB ( H thuộc AB) DO cắt AC tại O
a) chứng minh tứ giác OECH nội tiếp
b) Đường thaeng CD cắt cắt AB tại F. Chứng minh 2BCF +CFB = 90°
c) BD cắt CH tại M. Chứng minh EM || AB
Cho đường tròn (O). Lấy các điểm A, B, C thuộc (O) sao cho tam giác ABC nhọnvà AB > BC > CA. Đường tròn (C) bán kính CB cắt đường thẳng AB và (O) lần lượt tại D và E (D,E khác B) . Chứng minh đường thẳng DE vuông góc với đường thẳng AC
Cho đường tròn (O). Lấy các điểm A, B, C thuộc (O) sao cho tam giác ABC nhọnvà AB > BC > CA. Đường tròn (C) bán kính CB cắt đường thẳng AB và (O) lần lượt tại D và E (D,E khác B) . Chứng minh đường thẳng DE vuông góc với đường thẳng AC
Cho nửa đường tròn tâm O đường kính AB. Gọi C là một điểm trên nửa đường tròn sao cho cung CA nhỏ hơn cung CB. Trên nửa mặt phẳng bờ AB chứa điểm C, kẻ hai tia Ax và By cùng vuông góc với AB.Một đường tròn đi qua A và C (khác với đường tròn đường kính AB) cắt đường kính AB tại D và cắt Ax tại E.đường thẳng EC cắt tia By tại F
a) chứng minh BDCF là tứ giác nội tiếp đường tròn
b) chứng minh CD2 =CE.CF
c) Gọi I là giao điểm của AC và DE, J là giao điểm của BC và DF. Chứng minh IJ song song với AB
d) Khi EF là tiếp tuyến của nửa đường tròn đường kính AB thì D nằm ở vị trí nào trên AB