cho nửa đường tròn đường kính AB trên nửa mặt phẳng chứa đường tròn ta dựng tiếp tuyến ax từ m trên ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn C là tiếp điểm . ch vuông AB tại H .đường thẳng bc cắt ax tại D .Chứng minh mo song với lại BD Từ đó suy ra M là trung điểm của AD
b, chứng minh MB đi qua trung điểm của CH
a: Xét (O) có
MA,MC là tiếp tuyến
=>MA=MC
mà OA=OC
nên OM là trung trực của AC
=>OM vuông góc AC(1)
Xét (O) có
ΔACB nội tiếp
AB làđường kính
Do đo: ΔACB vuông tại C
=>AC vuông góc CB
=>\(AC\perp DB\left(2\right)\)
Từ (1), (2) suy ra DB//MO
Xét ΔABD có
O là trung điểm của AB
OM//DB
Do đó; M là trung điểm của AD
b:
Gọi I là giao điểm của MB với CH
CH\(\perp\)AB
DA\(\perp\)AB
Do đó: CH//DA
Xét ΔBDA có CH//DA
nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)
=>\(CH=\dfrac{BH}{BA}\cdot DA\)
Xét ΔBMA có IH//AM
nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)
=>\(IH=AM\cdot\dfrac{BH}{BA}\)
\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)
=>CH=2IH
=>I là trung điểm của CH