Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Lê Vy

cho nửa đường tròn đường kính AB trên nửa mặt phẳng chứa đường tròn ta dựng tiếp tuyến ax từ m trên ax kẻ tiếp tuyến thứ hai MC với nửa đường tròn C là tiếp điểm . ch vuông AB tại H .đường thẳng bc cắt ax tại D .Chứng minh mo song với lại BD Từ đó suy ra M là trung điểm của AD

b, chứng minh MB đi qua trung điểm của CH

Nguyễn Lê Phước Thịnh
15 tháng 10 2023 lúc 22:58

a: Xét (O) có

MA,MC là tiếp tuyến

=>MA=MC

mà OA=OC

nên OM là trung trực của AC

=>OM vuông góc AC(1)

Xét (O) có

ΔACB nội tiếp

AB làđường kính

Do đo: ΔACB vuông tại C

=>AC vuông góc CB

=>\(AC\perp DB\left(2\right)\)

Từ (1), (2) suy ra DB//MO

Xét ΔABD có

O là trung điểm của AB

OM//DB

Do đó; M là trung điểm của AD
b:

Gọi I là giao điểm của MB với CH

CH\(\perp\)AB

DA\(\perp\)AB

Do đó: CH//DA

Xét ΔBDA có CH//DA

nên \(\dfrac{CH}{DA}=\dfrac{BH}{BA}\)

=>\(CH=\dfrac{BH}{BA}\cdot DA\)

Xét ΔBMA có IH//AM

nên \(\dfrac{IH}{AM}=\dfrac{BH}{BA}\)

=>\(IH=AM\cdot\dfrac{BH}{BA}\)

\(\dfrac{CH}{IH}=\dfrac{\dfrac{BH}{BA}\cdot DA}{\dfrac{BH}{BA}\cdot AM}=\dfrac{DA}{AM}=2\)

=>CH=2IH

=>I là trung điểm của CH


Các câu hỏi tương tự
Trần Lê Vy
Xem chi tiết
tt quỳnh
Xem chi tiết
Phạm Văn Chí
Xem chi tiết
Thùy Lê
Xem chi tiết
Le Minh Hieu
Xem chi tiết
khánh nguyễn
Xem chi tiết
Trần Hoàng Thiên Bảo
Xem chi tiết
Phạm Lê Gia Bảo
Xem chi tiết
Le Trung Kien
Xem chi tiết