Cho tam giác ABC nội tiếp đường tròn (O). Các đường cao AD,BE,CF cắt nhau tại H. Gọi I,J,M lần lượt là trung điểm của AH,EF,BC. P,Q lần lượt là các giao điểm của EF với các tiếp tuyến tại B và C của đường tròn (O). MF cắt AD tại L. ME cắt đường thẳng qua F và song song với BC tại K
a, Chứng minh MP//CF, MQ//BE.
b, Chứng minh IJ luôn đi qua điểm cố định khi (O) và BC cố định, A di động trên cung BC.
c, Tính góc giữa 2 đường thẳng IK và EL
cho nửa đường tròn tâm O đường kính MN=5cm. Trên nửa đường tròn lấy điểm P sao cho MP=3.Vẽ PH vuông góc với MN H thuộc MN
a) cm: tam giác MNP vuông từ đó tính MH,PH, goc MNP
b) qua O vẽ đường thẳng song song với NP cắt tiếp tuyến tại M của nửa đường tròn tại I.
CM: IP là tiếp tuyến của đường tròn (O)
c) gọi K là giao điểm của NI và PH. Chứng minh K là trung điểm PH
Cho tam giác MNP nội tiếp đường tròn tâm O bán kính R . Q là trung điểm của NP. các đường cao MD,NE,PF của tam giác MNP cắt nhau tại H.
a) MH=2OQ
b) Nếu MN+MP=2NP thì sinN +sinP=2sinM
Cho tam giác MNP, gọi E, F lần lượt là trung điểm của MN, MP .
Chứng minh EF//HK với H, K lần lượt là trung điểm của NE, PF
(không được sử dụng tính chất đường trung bình của hình thang)
Cho nữa đường trong tâm O đường kính MN = 5 cm Trên nữa đường tròn lấy điểm P sao cho MP = 3cm Vẽ PH vuông góc với MN ( H\(\in\)MN)
a) Chứng minh tam giác MNP vuông từ đó tính MH,PH,MNP (số đo gốc làm tròn đến độ)
b) Qua O vẽ đường thẳng song song NP Cắt tuyết tại M của nữa đường tròn tại I Chứng minh IP là tiếp tuyến của đường tròn (O)
c) Gọi K Là giao điểm của NI và PH Chứng minh K là trung điểm PH
Giúp mk với nha m.n mình cảm ơn nha ^^
Cho tam giác MNP vuông tại M, NP = 2a. Trên cạnh MN lấy điểm A\(\left(A\ne M,A\ne N\right)\), qua trung điểm I của NP vẽ tia Ix vuông góc với IA, tia Ix cắt đường thẳng MP tại B. Xác định vị trí của điểm A để độ dài AB nhỏ nhất.
Cho tam giác ABC. Trên cạnh BC lấy điểm M bất kì. Trên đoạn AM lấy điểm K bất kì. Đường thẳng BK và CK cắt cạnh AC và AB lần lượt tại N và P. Qua K kẻ đường thẳng song song với BC cắt MP và MN tại E và F. CMR: I là trung điểm EF.
Từ điểm M nằm ngoài đường tròn (O) vẽ 2 tiếp tuyến MP và MQ với đường tròn (P và Q là 2 tiếp điểm). Trên nửa mặt phẳng bờ là đường thẳng OM chứa điểm P vẽ cát tuyến MAB (A nằm giữa M và B), gọi I là trung điểm của AB.
a) Chứng minh 5 điểm M, P, O, I, Q cùng thuộc một đường tròn.
b) PQ cắt AB tại E. Chứng minh rằng MP2 = ME. MI
c) Qua A kẻ đường thẳng song song với MP cắt PQ, PB lần lượt tại H và K. Chứng minh rằng KB = 2. HI
Cho tam giác MNP vuông taib M (MN<MP) đường cao MH. Từ H kẻ HQ vuông góc với MN tại Q và HG vuông góc với MP tại G.
a) Chứng minh tứ giác MQHG là hình chữ nhật.
b) Gọi I là trung điểm của HP, K là điểm đối xứng với M qua I. Chứng minh MP//Hk
c) QG cắt MH tại O; PO cắt MK tại D. Chứng minh: MK= 3MD
Cho tam giác mnp vuông tại m (mp>mn). O là điểm trên cạnh np sao cho op<om.Vẽ đường tròn (O) tiếp xúc với np tại e. Từ n vẽ tiếp tuyến với đường tròn (O) (F là tiếp điểm)
Cmr:
Năm điểm M, N, E, O,F cùng nằm trên một đường tròn
Gọi B là trung điểm của NP. Đường thẳng NF lần lượt cắt MB, ME ,MP tại các điểm D, K, I. Cmr: NK.IF=IK. NF
Cmr tam giác MDF cân