1. Cho a, b là các hằng số dương. Tìm min A=x+y biết x>0, y>0; \(\frac{a}{x}+\frac{b}{y}=1\)
2.Tìm \(a\in Z\), a#0 sao cho max và min của \(A=\frac{12x\left(x-a\right)}{x^2+36}\)cũng là số nguyên
3. Cho \(A=\frac{x^2+px+q}{x^2+1}\) . Tìm p, q để max A=9 và min A=-1
4. Tìm min \(P=\frac{1}{1+xy}+\frac{1}{1+yz}+\frac{1}{1+xz}\) với x,y,z>0 ; \(x^2+y^2+z^2\le3\)
5. Tìm min \(P=3x+2y+\frac{6}{x}+\frac{8}{y}\) với \(x+y\ge6\)
6. Tìm min, max \(P=x\sqrt{5-x}+\left(3-x\right)\sqrt{2+x}\) với \(0\le x\le3\)
7.Tìm min \(A=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\) với x>0, y>0; x+y=1
8.Tìm min, max \(P=x\left(x^2+y\right)+y\left(y^2+x\right)\) với x+y=2003
9. Tìm min, max P = x--y+2004 biết \(\frac{x^2}{9}+\frac{y^2}{16}=36\)
10. Tìm mã A=|x-y| biết \(x^2+4y^2=1\)
Cho x,y >0 và x+y=2015
a, Tìm max của: M= \(\frac{2x^2+8xy+2y^2}{x^2+2xy+y^2}\)
b, Tìm min của: N= \(\left(1+\frac{2015}{x}\right)^2+\left(1+\frac{2015}{y}\right)^2\)
cho các số thực x,y thỏa mãn \(2\left(x^2+y^2\right)=1+xy\)
tìm MAX và MIN của biểu thức: \(P=7\left(x^4+y^4\right)+4x^2y^2\)
cho x+2y và 2x+y là 2 số thực dương khác 2.tìm Min của biểu thức:
\(P=\frac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}+\frac{\left(2y^2+x\right)\left(4y+x^2\right)}{\left(2y+x-2\right)^2}-3\left(x+y\right)\)
Bài 1: Cho 3a + 5b = 12. Tìm MAX của B= ab
Bài 2: Tìm MAX A= \(\frac{y}{\left(y+10\right)^2}\left(y>0\right)\)
Bài 3: Tìm MIN A= \(\frac{x^2+x+1}{x^2+2x+1}\)
Cho các số thực x,y thỏa mãn : \(x^4+y^4+x^2-3=2y^2\left(1-x^2\right).\)Tìm min max A = \(x^2+y^2\)
Bài 1: Tìm min và max của \(A=x\left(x^2-6\right)\) biết \(0\le x\le3\)
Baì 2: Tìm max của \(A=\left(3-x\right)\left(4-y\right)\left(2x+3y\right)\) biết \(0\le x\le3\) và \(0\le y\le4\)
Bài 3: Cho a, b, c>0 và a+b+c=1. Tìm min của \(A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\)
Bài 4: Cho 0<x<2. Tìm min của \(A=\frac{9x}{2-x}+\frac{2}{x}\)
1) Tìm Min \(A=\frac{\left(x+1\right)\left(x+3\right)}{x}\) \(\left(x>0\right)\)
2) Tìm Min \(B=\frac{\left(x-y\right)\left(x-3y\right)}{xy}\) \(\left(x,y>0\right)\)
3) Tìm Min \(P=\frac{x}{x+2}+x\) \(\left(x>2\right)\)
4) Tìm Max \(Q=\sqrt{-3x^2+4x-1}-x^2\)
5) Tìm Max \(M=\frac{\sqrt{x-2018}}{x-1}\) \(\left(x\ge2018\right)\)
Cho X^2+2XY+7(X+Y)+2Y^2+1=0. Tìm min, max=X+Y+1