Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Hiếu Minh

Cho \(\left\{{}\begin{matrix}x,y,z>0\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le1\end{matrix}\right.\)

Tìm max \(Q=\dfrac{1}{\sqrt{2}x+y+z}+\dfrac{1}{x+\sqrt{2}y+z}+\dfrac{1}{x+y+\sqrt{2}z}\)

ĐỨc trọng
4 tháng 7 2022 lúc 21:04

\(\dfrac{9}{x+y+z}\le\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\le1\Rightarrow x+y+z\ge9\)

\(3\sqrt[3]{\dfrac{1}{xyz}}\le1\Rightarrow xyz\ge27\)

\(Q=\Sigma\dfrac{1}{x\left(\sqrt{2}-1\right)+x+y+z}\le\Sigma\dfrac{1}{x\left(\sqrt{2}-1\right)+9}\le\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{2}\)

\(\)thật vậy tương đương

\(\sqrt{2}\left(\sqrt{2}-1\right)\left[x\left(\sqrt{2}-1\right)+9\right]\left[y\left(\sqrt{2}-1\right)+9\right]\left[z\left(\sqrt{2}-1\right)+9\right]\ge2\left[\left(x\left(\sqrt{2}-1\right)+9\right)\left(z\left(\sqrt{2}-1\right)+9\right)+\left(x\left(\sqrt{2}-1\right)+9\right)\left(y\left(\sqrt{2}-1\right)+9\right)+\left(y\left(\sqrt{2}-1\right)\left(z\left(\sqrt{ }\right)\right)+9\left(\right)\right)\left(\right)2-1\left(\right)+9\right]\)

\(\Leftrightarrow xyz\sqrt{2}\left(\sqrt{2}-1\right)^4+9\sqrt{2}\left(\sqrt{2}-1\right)^3\left(xy+yz+xz\right)+81\sqrt{2}\left(\sqrt{2}-1\right)^2\left(x+y+z\right)+729\sqrt{2}\left(\sqrt{2}-1\right)\ge2\left(\sqrt{2}-1\right)^2\left(xy+yz+xz\right)+36\left(\sqrt{2}-1\right)\left(x+y+z\right)+486\)

\(\)\(\Leftrightarrow xyz\sqrt{2}\left(\sqrt{2}-1\right)^4+9\sqrt{2}\left(\sqrt{2}-1\right)^3\left(xy+yz+xz\right)-2\left(\sqrt{2}-1\right)^2\left(xy+Yz+xz\right)+81\sqrt{2}\left(\sqrt{2}-1\right)^2\left(x+y+z\right)-36\left(\sqrt{2}-1\right)\left(x+y+z\right)+729\sqrt{2}\left(\sqrt{2}-1\right)-486\ge0\left(1\right)\)

\(\left(1\right)\) là đúng do:

 \(xyz\sqrt{2}\left(\sqrt{2}-1\right)^4\ge27\sqrt{2}\left(\sqrt{2}-1\right)^4\)

\(9\sqrt{2}\left(\sqrt{2}-1\right)^3\left(xy+yz+xz\right)-2\left(\sqrt{2}-1\right)^2\left(xy+yz+xz\right)=\left(xy+yz+xz\right)\left[9\sqrt{2}\left(\sqrt{2}-1\right)^3-2\left(\sqrt{2}-1\right)^2\right]\ge3\sqrt[3]{27^2}\left[9\sqrt{2}\left(\sqrt{2}-1\right)^3-2\left(\sqrt{2}-1\right)^2\right]\)

\([81\sqrt{2}\left(\sqrt{2}-1\right)^2-36\left(\sqrt{2}-1\right)]\left(x+y+z\right)\ge9\left[81\sqrt{2}\left(\sqrt{2}-1\right)^2-36\left(\sqrt{2}-1\right)\right]\)

=>vế trái của (1) 

\(\ge27\sqrt{2}\left(\sqrt{2}-1\right)^4+3\sqrt[3]{27^2}\left[9\sqrt{2}\left(\sqrt{2}-1\right)^3-2\left(\sqrt{2}-1\right)^2\right]+9\left[81\sqrt{2}\left(\sqrt{2}-1\right)^2-36\left(\sqrt{2}-1\right)\right]+729\sqrt{2}\left(\sqrt{2}-1\right)-486=0\)

do đó \(Q\le\dfrac{\sqrt{2}\left(\sqrt{2}-1\right)}{2}\)


Các câu hỏi tương tự
Nguyễn Thị Huyền Diệp
Xem chi tiết
dinh huong
Xem chi tiết
ILoveMath
Xem chi tiết
Trịnh Ánh My
Xem chi tiết
Phạm Tuấn Kiệt
Xem chi tiết
Hiếu Minh
Xem chi tiết
Xem chi tiết
Dung Vu
Xem chi tiết
Người Vô Danh
Xem chi tiết
ILoveMath
Xem chi tiết