Cho \(\left\{{}\begin{matrix}a,b,c>0\\a^2+b^2+c^2=1\end{matrix}\right.\)
CMR: \(\dfrac{a}{b^2+c^2}+\dfrac{b}{c^2+a^2}+\dfrac{c}{b^2+a^2}\ge\dfrac{3\sqrt{3}}{2}\)
Cho a,b,c >0 và \(a^2+b^2+c^2=3\)
\(cmr:\left\{{}\begin{matrix}\dfrac{a}{a^3+2}\le\dfrac{1}{3}\\\dfrac{1}{a^3+2}+\dfrac{1}{b^3+2}+\dfrac{1}{c^3+2}\ge1\end{matrix}\right.\)
Cho \(\left\{{}\begin{matrix}a,b>0\\c\ne0\end{matrix}\right.\) và \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\).
CMR: \(\sqrt{a+b}=\sqrt{b+c}+\sqrt{c+a}\).
cho 3 so a,b,c thoa man dieu kien : \(\left\{{}\begin{matrix}a+b+c=1\\\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=0\end{matrix}\right.\)
tinh gia tri cua bieu thuc T=\(a^2+b^2+c^2\)
Giải các hệ phương trình:
a) \(\left\{{}\begin{matrix}\left(x+3\right)\left(y-5\right)=xy\\\left(x-2\right)\left(y+5\right)=xy\end{matrix}\right.\)
b) \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{3}{4}\\\dfrac{1}{6x}+\dfrac{1}{5y}=\dfrac{2}{15}\end{matrix}\right.\)
Cho các số x, y, z thoả mãn: \(\left\{{}\begin{matrix}x+y+z=a\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{c}\\x^2+y^2+z^2=b^2\end{matrix}\right.\)
Tính \(P=x^3+y^3+z^3\) theo a, b, c.
\(\left\{{}\begin{matrix}a,b,c>0\\a+b+c=3\end{matrix}\right.\)
Tìm GTNN của:
S=\(\sqrt{a^2+\dfrac{1}{b^2}}+\sqrt{b^2+\dfrac{1}{c^2}}+\sqrt{c^2+\dfrac{1}{a^2}}\)
Cho các số dương a,b,c thỏa mãn \(\left\{{}\begin{matrix}a+b+c=2\\a^2+b^2+c^2=2\end{matrix}\right.\)
Chứng minh rằng: \(a\sqrt{\dfrac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\dfrac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\dfrac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}=2\)
Cho \(\left\{{}\begin{matrix}\text{x, y, z > 0}\\\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\dfrac{1}{4}\end{matrix}\right.\). Tìm \(\min\limits_P=\dfrac{1}{\alpha\text{a}+\beta b+\gamma c}+\dfrac{1}{\beta\text{a}+\gamma b+\alpha c}+\dfrac{1}{\gamma\text{a}+\alpha b+\beta c} v\text{ới} \alpha; \beta;\text{ \gamma}\in\) \(\mathbb{N}^*\)