Cho hình vuông ABCD. Vẽ đường tròn tâm O đường kính AB và đường tròn tâm D bán kính DC chúng cắt nhau tại một điểm thứ hai là E. Tia BE cắt DC tại M. Chứng minh rằng M là trung điểm của DC
Cho hình vuông ABCD .Vẽ đường tròn (D; DC) và đường tròn (O) đường kính BC, cắt nhau tại một điểm thứ hai là E.tia CE cắt AB tại M. Tia BE cắt AD tại N.chứng minh: a) N là trung điểm của AD. b) M là trung điểm của AB
Cho hình vuông ABCD, vẽ đường tròn (D;DC) và đường tròn (O) đường kính DC, chúng cắt nhau tại E. Tia CE cắt AB tại M, tia BE cắt AD tại N. CMR:
a, Tứ giác NBOD là hình bình hành từ đó suy ra N là trung điểm AD
b, M là trung điểm AB
Cho đường tròn tâm O đường kính AB. Gọi C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE = AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại K và đường tròn tại điểm thứ hai là D. Tia AC và tia BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.
Chứng minh EH // BC
Tính amb chứng minh AFEK nội tiếp
Chứng minh I là trung điểm AE.
Cho đường tròn tâm O đường kính AB=2R. Cho C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE=AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc BAC cắt EH tại đường tròn tại điểm thứ hai là D. Tia AC và BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.
1) Tính so đo góc AMB
2) Chứng minh EH song song với BC
3) Chứng minh AFEK nội tiếp
4) Chứng minh I là trung điểm của AE
5)AD cắt CE tại I. Chứng minh CI đi qua trung điểm của HJ
6)Vẽ đường kính CP, CB cắt AD tại O', MO' cắt AB tại N. Chứng minh P,N,D thẳng hàng
7)AD cắt CO tại S, BS cắt AC tại Q. Chứng minh QC.QM=QS.QB
8)Chứng minh PNCE là hình thoi và góc NPE = 45o, CN là phân giác của OCP
9)CD cắt AB tại L. Chứng minh LN.LO=LP.LA và NB.AL=NA.BL
10)CN cắt AD tại V. Chứng minh VL,DN,CB đồng quy
Cho hình vuông ABCD. Vẽ (D;DC) và (O) đường kính AB, chúng cắt nhau tại điểm thứ 2 là E. Tia CE cắt AB tại M, Tia BE cắt AD tại N. CMR: M là trung điểm AB.
Cho đường tròn tâm O đường kính AB = 2R. Gọi C là điểm chính giữa của cung AB. Trên đoạn AB lấy điểm E sao cho BE = AC. Vẽ EH vuông góc với AC tại H. Tia phân giác của góc cắt EH tại K và đường tròn tại điểm thứ hai là D. Tia AC và tia BD cắt nhau tại M. Tia CK cắt AB tại I và cắt đường tròn tại điểm thứ hai là F.
1/ Tính số đo góc
2/ Chứng minh EH // BC.
3/ Chứng minh tứ giác AFEK nội tiếp.
4/ Chứng minh I là trung điểm của đoạn AE.
Cho đường tròn tâm O bán kính R. hai đường kính AB và CD vuông góc với nhau. E là điểm bất kì trên cung nhỏ BC, vẽ tiếp tuyến tại E của đường tròn O cắt AB tại M. CE cắt AB tại K. I là giao điểm của ED với AB.
a/ chứng minh EA là tia phân giác góc CED
b/ chứng minh 4 điểm O;E;K;D thuộc 1 đường tròn, xác định tâm đường tròn qua 4 điểm đó.
c/ Gọi H là trung điểm DK, chứng minh tứ giác HMIO nội tiếp.
d/ chứng minh AI.BK=IK.IB
( GIÚP MÌNH CÂU D NHÉ :)