Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng 1AD2=1AM2+1AN2
Cho hình vuông ABCD ,trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF ) , AH cắt DC và BC lần lượt tại hai điểm M,N
a, Chứng minh rằng tứ giác AEMD là hình chữ nhật
b, Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Chứng minh rằng :AC=2EF
c, Chứng minh rằng \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
a. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
b. Biết diện tích tam giác BCH gấp bốn lần diện tích AEH. Chứng minh rằng: AC = 2EF.
c. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2. Biết diện tích tam giác BCH gấp bốn lần diện tích tam giác AEH. Chứng minh
rằng: AC = 2EF.
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
cho hình vuông ABCD,trên cạnh AB lấy E ,trên cạnh AD lấy F sao cho .vẽ AH vuông góc BF,AH cắt DC tại M,cắt BC tại N
a) chứng minh :AEMD là hình chữ nhật
b) biết SBCH =4SAEH . chứng minh AC=2EF
c) chung minh :1/AD2=1/AM2+1/AN2
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE=AF. Vẽ AH vuông góc với BF ( H thuộc BF), AH cắt DC và BC lần luotj tại hai điểm M, N
a) Cmr tứ giác AEMD là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. Cmr AC=2EF
c) Cmr: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Giúp mk vs
Cho hình vuông ABCD, trên cạnh AB lấy điểm E và trên cạnh AD lấy điểm F sao cho AE = AF. Vẽ AH vuông góc với BF (H thuộc BF), AH cắt DC và BC lần lượt tại hai điểm M, N.
1. Chứng minh rằng tứ giác AEMD là hình chữ nhật.
2.CM: ∆CBH~∆EAH
3. Chứng minh rằng: \(\frac{1}{AD^2}=\frac{1}{AM^2}+\frac{1}{AN^2}\)
Cho hình vuông ABCD trên cạnh AB lấy E và trên cạnh AD lấy F sao cho AE=AF. Vẽ AH _I_ BF(H thuộc BF); AH cắt DC và BC lần lượt tại M và N.
a) c/m AEMD là hình chữ nhật
b) Biết diện tích tam giác BCH gấp 4 lần diện tích tam giác AEH. C/m AC=2EF
c) C/m 1/(AD2)=1/(AM2)+1/(AN2) các bạn giúp mình câu b câu c nha.
cho hình vuoongg ABCD, lấy E và F lần lượt trên AB và AD sao cho AE=AF. Kẻ AH vuông góc với BF cắt DC và BC lần lượt ở M và N
a) chứng minh AEMD là hình chữ nhật
b) tam giác BHC có diện tích gấp 4 lần tam giác AEH chứng minh AC=2EF
c) chứng minh 1/AD2 = 1/AM2+1/AN2
Cho hình vuông ABCD, trên AB lấy E, AD lấy F sao cho AE=AF. Vẽ AH vuông góc với BF(H thuộc BF), AH cắt BC và DC tại N,M.
a. C/M ABMD là hcn
b.Biết SBHC=4.SAEH.. cmAC=2EF