Cho hình vuông ABCD. Trên AB và AD lần lượt lấy M và K sao cho AM=AK. Trên MD lấy E sao cho
Cho hình vuông ABCD có cạnh bằng a tâm O, hai điểm di động M,N lần lượt trên hai cạnh BC, CD sao cho góc MAN= 45 độ. Gọi H, K lần lượt là hình chiếu của B, D trên AM, AN
a). Chứng minh tg ABHO, ADKO nội tiếp khi BM= DN= \(\dfrac{a}{3}\)
b) Chứng minh \(\dfrac{AH}{AN}=\dfrac{AK}{AM}\)
Cho tam giác ABC cân tại A và góc BAC = 150 độ. Dựng tam giác AMB và tam giác ANC sao cho các tia AM, AN nằm tròn góc BAC với góc ABM = góc ACN = 90 độ, góc MAB = 30 độ, góc NAC = 60 độ. Trên MN lấy D sao cho ND = 3MD. BD cắt AM và AN lần lượt tại K và E. F là giao điểm của BC và AN. Chứng minh rằng : a) Tam giác NCE cân b) KF//CD
Giúp mình với mốt là mình đi thi rồi
Cho (O,R) trên (O,R) lấy hai điểm A và H sao cho AH<R. Gọi a là tiếp tuyến tại H của (O) . Trên a lấy hai điểm B và C sao cho H nằm giữa B,C và AB=AC=R Từ H lần lượt vẽ HM vuông góc với OB (M thuộc OB ) và HN vuông góc OC (N thuộc OC )
1) CM rằng MN là trung trực OA
2) Chứng minh OB.OC=2R2
3) Tìm giá trị lớn lớn nhất của diện tích tam giác OMN khi H thay đổi
( Hướng dẫn : Gọi S là điểm thuộc cung nhỏ HI. Kẻ tiếp tuyến tại S của (O) cắt BH, BI lần lượt tại R và T )
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON.
Cho hình thoi ABCD có góc BAD bằng 500, O là giao điểm của AC và BD, H là hình chiếu của điểm O trên AB. Trên tia đối của BC lấy M, trên tia đối của DC lấy N sao cho HM //AN. Tính số đo góc MON
Cho nửa đường tròn (O;R) đường kính AB. Trên nửa mặt phẳng bờ AB có chứa nửa đường tròn vẽ tiếp tuyến Ax với nửa đường tròn, trên Ax lấy M sao cho AM>R. Từ M vẽ tiếp tuyến MC với nửa đường tròn, từ C vẽ CH vuông góc với AB,CE vuông góc với AM. Đường thẳng vuông góc với AB tại O cắt BC tại N.Đường thẳng MO cắt CE,CA,CH lần lượt tạiQ,K,P.a ) MB cắt CH tại I. Chứng minh KI song song vớiAB b) Gọi G và F lần lượt là trung điểm của AH và AE. Chứng minh PG vuông góc với QF
cho hình vuông ABCD. Trên cạnh BC lấy điểm E, gọi F là giao điểmcủa AE và DC, I là giao điểm của DE và BF. Chứng minh: CI vuông góc AF
cho hcn ABCD ( AB>AD). Lấy điểm E ∈ AD ,lấy các điểm I,K ∈ CD sao cho DI=CK.đường thẳng vuông góc với EK tại K cắt BC tại M .tính góc EIM