cho hình bình ABCD ,gọi O là giao điểm của 2 đường chéo AC và BD .Trên cạnh AB lấy điểm E , trên cạnh CD lấy điểm F sao cho AE = CF
a, CM: E đối xứng với F qua O
b,Từ E kẻ Ex //AC cắt BC tại I , từ F kẻ Fy// AC cắt AD tại K
CM: EI=FK, I và K đối xứng với nhau qua O
nhờ giúp mk vs , mk đang cần gấp . mk cảm ơn trước
Cho tam giác ABC cân tại A, đường cao AD. Gọi M là trung điểm của AB. E là điểm đối xứng với D qua M.
a) CM: tứ giác ADBE là hình chữ nhật
b) TỨ giác ACDE là hình gì? CHứng minh?
c) Lấy điểm K sao cho B là trung điểm của AK. CM: CK=2CM
Cho hình vuông ABCD cạnh a . Gọi O là giao điểm hai đường chéo AC và BD . Lấy điểm M bất kì trên cạnh AB ( M khác A,B) . Qua A kẻ đường thẳng vuông góc với CM tại H và cắt BC tại K
1.Chứng minh \(KH.KA=KB.KC\) và KM song song với BD
2.Gọi N là trung điểm của BC . Trên tia đối của tia NO lấy điểm E sao cho \(\dfrac{ON}{OE}=\dfrac{\sqrt{2}}{2}\) .Gọi F là giao điểm của DE và OC . Tính \(\dfrac{FO}{FC}\)
3.Gọi P là giao điểm của MC và BD , Q là giao điểm của MD và AC . Đặt AM=x , 0<x<a . Tính diện tích tứ giác CPQD theo x và a . Tìm vị trị của M để diện tích tứ giác CPQD đạt giá trị nhỏ nhất
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho hình vuông ABCD có cạnh là a . Trên cạnh BC lấy điểm E bất kì ( E khác B và C ) đường thẳng vuông góc với AE tại A cắt đường thẳng CD tại H . Gọi F là giao điểm của hai đường thẳng AE và DC
1.Chứng minh tam giác AHE vuông cân
2.Chứng minh \(AB^2=HD.DF\)
3.Chứng minh \(\dfrac{1}{AE^2}+\dfrac{1}{AF^2}\) không đổi khi E di chuyển trên cạnh BC
Cho hình thang ABCD có đáy nhỏ AB , đáy lớn CD . Gọi M và N là trung điểm của cạnh BC và cạnh CD .
a) Nếu độ dài MN là 7,5 cm thì độ dài BD là bao nhiêu ? Vì sao ?
b) Biết tia AB và tia NM cắt nhau tại K . Cm NK = BD
c ) Gọi E là điểm đối xứng của điểm D qua điểm B . CM K là trung điểm của đoạn thẳng CE
Cho hình thang ABCD có đáy nhỏ AB , đáy lớn CD . Gọi M và N là trung điểm của cạnh BC và cạnh CD .
a) Nếu độ dài MN là 7,5 cm thì độ dài BD là bao nhiêu ? Vì sao ?
b) Biết tia AB và tia NM cắt nhau tại K . Cm NK = BD
c ) Gọi E là điểm đối xứng của điểm D qua điểm B . CM K là trung điểm của đoạn thẳng CE
Bài 1: Cho hình bình hành ABCD. Trên BD lấy điểm E, gọi F là điểm đối xứng với C qua E. Qua F, kẻ Fx song song với AD, Fy song song với AB; Fx cắt AB tại I, Fy cắt AD tại K. Chứng minh rằng: I, K, E thẳng hàng
Bài 2: Cho hình thang ABCD có đáy lớn CD. Qua A kẻ đường thẳng AK song song với BC. Qua B kẻ đường thảng BI song song với AB. BI cắt AC ở F, AK cắt BD ở E. Chứng minh rằng:
a) EF // AB;
b) AB^2 = CD. EF
Bài 3: Cho hình bình hành ABCD, điểm E thuộc cạnh AB, điểm F thuộc cạnh AD. Đường thẳng qua D và song song với EF cắt AC ở I. Đường thẳng qua B và song song với EF cắt AC ở K. Chứng minh rằng:
a) AI = CK
b) AB/AE + AD/AF = AC/AN ( N là giao điểm của EF và AC)
Bài 4: Cho hình bình hành AABCD. Đường thẳng đi qua D cắt AC, AB, CB theo thứ tự ở M, N, K. Chứng minh rằng:
a) DM2 = MN.MK
b) DM/DN + DM/DK = 1
Bài 5: Cho hình thoi ABCD. Qua C kẻ đường thẳng d cắt các tia đối của các tia BA, CA theo thứ tự ở E và F. Chứng minh rằng:
a) EM/AB = AD/DF
b) EBD đồng dạng với BDF;
c) Góc BID bằng 120 độ ( I là giao điểm của DE và BF)
Bài 6: Cho cân tại A có BC = 2a. M là trung điểm của BC. Lấy các điểm D, E theo thứ tự thuộc các cạnh AB, AC sao cho
CMR: Tích BD.CE không đổi
CMR: DM là phân giác của góc
Tính chu vi của AED nếu ABC đều
Bài 7: Cho ( AB khác AC) Gọi E và F theo thứ tự là các hình chiếu của B và C trên tia phân giác của góc A. Gọi K là giao điểm của các đường thẳng FB và CE. Chứng minh rằng: AK là tia phân giác của góc ngoài tại đỉnh A của
Bài 8: Cho hình thang ABCD( AB //CD). M là trung điểm của cạnh CD. Gọi I là giao điểm của AM và BD, K là giao điểm của BM và AC
a) Chứng minh rằng: IK//AB
b) Đường thẳng IK cắt AD và BC theo thứ tự ở E và F. Chứng minh IE = IK = KF
Cho tam giác ABC cân tại A. GỌi H,K lần lượt là trung điểm của các cạnh BC và AC
a) CM: tứ giác ABHK là hình thang
b) Trên tia đối của tia HA lấy điểm E sao cho H là trung điểm của cạnh AE. CM: tứ giác ABEC là hình thoi
c) Qua Avex đường thẳng vuông góc vói AH cắt tia HK tại D. CM: tứ giác ABHD là hình bình hành
d) CM: tứ giác ADCH là hình chứ nhật
e) Vẽ đường cao HN của tam giác AHB, gọi I là trung điểm của AN, trên tia đối của HB lấy điểm M sao cho B là trung điểm cạnh MH. CM: HN vuông HI