Cho hình thoi ABCD, góc B bằng 50o. Lấy E là trung điểm của BC. Từ A hạ AF ⊥ DF. Tính góc DFC
Cho hình thoi ABCD, góc B= 500. Lấy E là trung điểm của BC. Từ A hạ AF vuông góc với DE ( F thuộc DE) . tính góc DFC
1. Cho tam giác ABC vuông tại A, phân giác BD. Gọi M,N,E lần lượt là trung điểm của BD, BC và DC.
a. C/m: MNED là hình bình hành
b. C/m: AMNE là hình thang cân
c. Tìm điều kiện của tam gáic ABC để MNED là hình thoi
2. Cho hình thang cân ABCD (AB//CD) có góc D=45 độ. Vẽ AH vuông góc với CD tại H. Lấy điểm E đối xứng với D qua H
a. C/m: ABCE là hình bình hành
b. Qua D vẽ đường thẳng song song với AE cắt AH tại F. C/m: H là trung điểm của AF
c. AEFD là hình gì ?
Cho hình vuông ABCD. Lấy điểm E trên cạnh BC, điểm F trên tia đối của tia DC sao cho BE=DF
a, Chứng minh: AE = AF; AE \(\perp\) AF
b, I là trung điểm của EF. Chứng minh: B; D; I thẳng hàng
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
Cho hình vuông ABCD, E là 1 điểm nằm trên cạnh DC, F là giao điểm của đường thẳng AE và BC. Qua A kẻ đường thẳng vuông góc với AE cắt đường thẳng CD tại K.
a) Chứng minh: tam giác KAF vuông cân
b) AF.(CK-CF)=BD.FK
(Lm hộ mk ý b nha)
cho tam giác ABC vuông tại A. Từ một điểm D bất kì trên cạnh BC kẻ \(DE\perp AC\) tại E: \(DF\perp AB\) tại F
A) chứng mình rằng tứ giác AEDF là hình chữ nhật
B)trên tia đối của tia AB lấy điểm G sao cho AG=AF. Gọi H là giao điểm của AE vad DG. Chúng minh rằng FH là đường trung tuyến của tam giác FDG
Cho tam giác ABC có góc B là góc nhọn. Gọi D là điểm đối xứng của B qua trung điểm của AC. Gọi H, K lần lượt là hình chiếu vuông góc của A trên hai đường thẳng BC, CD. Khi góc B bằng 30 độ. Tính tỉ số diện tích tam giác AHK và diện tích hình bình hành ABCD