cho hình thang vuông ABCD có D=A=90 CD=2AB,gọi H là hình chiếu của D trên AC. H,N lần lượt là trung điểm của HC và HD. I là điểm đối xứng của D qua M
chứng minh:
tứ giác DHIC là hình bình hành
Tứ giác ABNM là hình bình hành
I đối xứng với D qua BM
Cho hình thang ABCD ( AB // CD ) , lấy E,F lần lượt là trung điểm của AC,BD. M là một điểm thuộc AB. Vẽ H đối xứng với M qua E, K đối xứng với M qua F.
Chứng minh : D,C,H,K thẳng hàng
Cho tam giác ABC cân tại A có AH đường cao. Gọi M và N lần lượt là trung điểm AB và AC. Gọi D là điểm đối xứng của H qua M, E là điểm đối xứng của A qua H. Gọi F là hình chiếu của H lên EC, I và K lần lượt là trung điểm HF và FC. Chứng minh EI vuông góc BF
cho hình thang ABCD ( A=D=90 độ) có CD = 2AB . H là hình chiếu của D trên AC . M , N lần lượt là trung điểm của HC,HD. I là điểm đối xứng của D qua M . CM
a, tứ giác CDHI là hình bình hanh ?
b, tứ giác ABMN là hình bình hành ?
c, I đối xứng với D qua BM
Vẽ hình cho mình nx nha
Cho hình thang vuông ABCD(AB//CD), góc A=góc D=90 có AB=AD, góc C=45 gọi E là điểm đối xứng của B qua A, G là điểm đối xứng của C qua D. H là trung điểm của FG. Tia BH cắt CD tại K.
a)c/m BEFD là hình vuông và E,B,C thẳng hàng
b)c/m tam giác CFK cân
Cho hình thang ABCD vuông tại A và D, CD = 2AB. Gọi H là hình chiếu của D lên AC, M và N lần lượt là trung điểm của HC và HD. Tính BMD.
AI giải toán giúp mình với, Thanks nhiều !!!!!!!!!!!
Cho tam giác ABC vuông tại A (AB<AC), trung tuyến AM. Gọi D là điểm đối xứng của A qua M.
a) CM: tứ giác ABCD là hcn
b) Kẻ vuông góc với AD tại H. Gọi K là điểm đối xứng của C qua H. CM: Tứ giác ABKD là hình thang cân
c) Gọi T là điểm đối xứng của D qua H, E là giao điểm của AC và KT. CM: CK=2EH
d) CM: EH vuông góc EC
Cho hình chữ nhật ABDC (AB<AC) có AH là đường cao của tam giác ABC. Lấy điểm E đối xứng với A qua H. Gọi M và N lần lượt là hình chiếu của BD và CD lên điểm E.
Chứng minh ba điểm H, M, N thẳng hàng.Gọi K và P lần lượt là trung điểm của CH và BD. Đường thẳng vuông góc với AK tại K cắt AC tại Q. Chứng minh ba điểm K, Q, P thẳng hàng.Từ trung điểm L của cạnh BD vẽ LI vuông góc với BC tại I. Gọi F đối xứng D qua C. Đường thẳng vuông góc với DF tại F cắt LI tại O. Chứng minh O cách đều B và F.
Nhờ các bạn giải dùm mình câu cuối 3 bài này nhé! Thanks các bạn!
Bài 1: Cho Hình chữ nhật ABCD có O là giao điểm hai đường chéo, E nằm giữa O và B. Điểm F đối xứng với A qua E, I là trung điểm của CF.
a) CM: OEFC là hình thang
b) CM: OEIC là hình bình hành.
c) Gọi H và K lần lượt là hình chiếu của F lên BC và CD. CM: CHFK là hình chữ nhật.
d) CM: E, H, K thẳng hàng. (nhờ mọi người làm giúp câu này)
Bài 2: Cho tam giác ABC vuông tại A (AB>AC). Đường cao AH, gọi M là trung điểm AC. Trên tia đối của tia MH lấy điểm D sao cho MD=MH.
a) CM: ADCH là hình chữ nhật.
b) Gọi E là điểm đối xứng với C qua H. CM: ADHE là hình bình hành.
c) Vẽ EK vuông góc với AB tại K. I là trung điểm AK. CM: KE // IH.
d) Gọi N là trung điểm BE. CM: HK vuông góc với KN. (nhờ mọi người làm giúp câu này)
Bài 3: Cho tam giác ABC nhọn, AH là đường cao. Qua A vẽ đường thẳng vuông góc với AH và qua B vẽ đường thẳng vuông góc với BC, hai đường này cắt nhau tại E.
a) Vẽ đường cao BK của tam giác ABC cắt AH tại N. Gọi F là điểm đối xứng của B qua K mà M là điểm đối xứng của A qua K. CM ABMF là hình thoi.
b) Gọi D và I lần lượt là trung điểm của AC và BC. hai đường trung trực của AC và BC cắt nhau tại O. Gọi L là điểm đối xứng với A qua O. CM: LC // BN.
c) CM: N, I, L thẳng hàng. (nhờ mọi người làm giúp câu này)