Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC
Cho tam giác ABC có AB<AC nội tiếp (O), các đường cao AD,BE,CF cắt nhau tại H. CH cắt (O) tại giao điểm thứ 2 là P, PD cắt (O) tại giao điểm thứ 2 là Q, Co cắt DE tại K, AQ cắt DE tại I, đường tròn ngoại tiếp tam giác FDK cắt AD tại Ma, Chứng minh tam giác FHD đồng dạng với tam giác ADEb, Chứng minh AQ chia đôi DEc, Chứng minh MI song song AC
Cho ∆ ABC nhọn nội tiếp đường tròn (O;R)(AB<AC) có các đường cao AD và BE cắt nhau tại H. Gọi M là trung điểm BC . Đường tròn (K) đường kính AH cắt AM tại P. Gọi R' là bán kính đường tròn ngoại tiếp tam giác BPC
Cmr tứ giác HDMP nội tiếp được đường tròn
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Câu 2: Cho phương trình x2 -(m-1)x+(m-2)=0(m là tham số).
a/ Tìm m để phương trình có hai nghiệm trái dấu.
Câu 1: Cho tam giác ABC nhọn nội tiếp (O), kẻ đường kính AD của (O) .Gọi E, K lần lượt là giao điểm của AC và BO, AC và BD .Tiếp tuyến của (O) tại B cắt CD tại F
a/ Chứng minh 4 điểm B, E, C, F cùng thuộc một đường tròn.
b/ Chứng minh EF // AB.
Cho (O;R) đường kính AB cố định. Gọi M là trung điểm của OB. Dây CD vuông góc AB tại M. Điểm E chuyển động trên cung lớn CD. Nối AE cắt CD tại K, nối BE cắt CD tại H.
a) CM: tứ giác BMEK nội tiếp đường tròn
b) CM: AE.AK không đổi
giúp mk với mk đang cần gấp
Cho đường tròn (O) đường kính AB. Gọi H là điểm nằm giữa O và B. Kể dây CD vuông góc AB tại H. Trên cung nhỏ AC lấy điểm E. Kẻ CK vuông góc AE tại K. Đường thẳng DE cắt CK tại F.
a) T/g AHCK nội tiếp
b) AH.AB=AD^2
c) Tam giác ACF là tam giác cân
ai chỉ em câu b vs ạ
Cho tam giác ABC nhọn AB <AC , đường cao AH .M,N là hình chiếu của H trên AB,AC . MN cắt BC tại D . Trên nửa mp bờ BC chứa A vẽ nửa đường tròn đường kính CD . Qua B kẻ đường vuông góc với CD cắt nửa đường tròn tại E. Gọi O là tâm đường tròn ngoại tiếp tam giác MNE . Cm: OE vuông góc DE
Cho đường tròn (O) đường kính AB. Gọi F là điểm nằm giữa O và A. Kẻ dây CD vuôn góc với AB tại F. Trên cung nhỏ BC lấy điểm M, nối A với M cắt CD tại E. 1) Chứng minh tứ giác EFBM nội tiếp. 2) Chứng minh MA là phân giác của góc CMD và AC = AE.AM. 3) Gọi giao điểm của CB với AM là N, MD với AB là I. Chứng minh N là tâm đường tròn nội tiếp ACIM