Cho hình thang vuông ABCD có \(\widehat{A}=\widehat{D}=90^o\). Kẻ \(BH\perp CD\)tại H.
a) Chứng minh tứ giác ABHD là hình chữ nhật.
b) Cho biết AB = 3cm, BC = 5cm, CD = 6cm. Tính diện tích tứ giác ABHD.
c) Gọi E là giao điểm của AH và BD, M là trung điểm của BC và N là điểm đối xứng của M qua E. Chứng minh tứ giác CDNM là hình bình hành.
d) Kẻ \(CK\perp BD\)tại K. Gọi I là điểm đối xứng với K qua M. Chứng minh \(KH\perp IH\).
Cho hình thang ABCD ( A B / / C D ) c ó A B = A D = C D / 2 . Gọi M là trung điểm của CD và H là giao điểm của AM và BD.
a) Chứng minh tứ giác ABMD là hình thoi
b) Chứng minh BD ⊥ BC
c) Chứng minh ΔAHD và ΔCBD đồng dạng
d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Cho hình thang ABCD (AB//CD) có AB= 4cm, BD= 6cm, CD =9cm. Gọi I là giao điểm của AC và BD
a) chứng minh IA. IB = IC. ID
b) chứng minh tam giác ABD đồng dạng với tam giác BCD
c) Biết diện tích tam giác ABD bằng 16cm . Tính diện tích hình thang ABCD
d) tính số đo góc B của hình thang ABCD biết góc ADB bằng 42 độ
a. Cho Tam giác ABC vuông tại A, từ điểm H trên cạnh AC kẻ HK ^ BC tại K. Chứng minh: AB. KC = KH. AC.
b. Cho hình thang ABCD (AB//CD, AB < CD) có AB = 4cm, CD = 16cm, BD = 8cm. Chứng minh: góc DAB và góc DBC.
c. Cho ∆ABC nhọn , hai đường cao AH và BK cắt nhau tại I. Chứng minh: CA.BK = AH.BC.
1.Cho tam giác ABCcân tại A có AB = AC = 100cm, BC = 120cm. Hai đường cao AD, BE cắt nhau tại H.a)Tìm các tam giác đồng dạng với tam giác BDHb)Tình độ dài các đoạn: HD, AH, BH, EH
2.Cho tam giác ABC vuông tại A, AB = 6cm, AC = 8cm. Đường cao AH, đường phân giác BDa)Tình độ dài AD, DCb)Gọi I là giao điểm của AH và BD. C/m: AB.BI = BD.HBc)C/m: Tam giác AID cân
3.Cho hình thang cân ABCD (AB//CD), AB < CD. Đường cao BH chia cạnh CD thành 2 đoạn DH = 16cm, HC = 9cm. Biết BD vuông góc BC.a)Tính đường chéo AC và BD của hình thangb)Tính diện tích hình thangc)Tính chu vi hình thang
Bài 4: Cho hình chữ nhật ABCD, có AB = 8cm, BC = 6cm. Từ A kẻ đường thẳng vuông góc với BD tại H, cắt CD tại M
a. Chứng minh: \(AD^2=DH.DB\). Tính HD, HB
b. Chứng minh: MD.DC = HD.BD
c. Tính diện tích tam giác MDB
d. Gọi I, K lần lượt là trung điểm của AB và DM. Chứng minh I, H, K thẳng hàng
Cho hình thang ABCD (AB // CD) có AB = AD = CD/2. Gọi M là trung điểm của CD và H là giao điểm của AM và BD. a) Chứng minh tứ giác ABMD là hình thoi b) Chứng minh BD ⊥ BC c) Chứng minh ΔAHD và ΔCBD đồng dạng d) Biết AB = 2,5cm; BD = 4cm. Tính độ dài cạnh BC và diện tích hình thang ABCD.
Cho hình thang vuông ABCD ( góc A = góc D = 90), AB=4cm,CD=9cm,AD=6cm a) CM: tam giác BAD đồng dạng tam giác ADC b) CM: AC vuông góc với BD c) Gọi O là giao điểm của AC và BD. Tính tỉ số diện tích 2 hai tam giác AOB và COD. d) Gọi K là giao điểm của DA và CB. Tính KA.
1. Cho hình chữ nhật ABCD. Vẽ AH vuông góc BD (H thuộc BD), HK // CD (K thuộc BC).
a) Chứng minh tam giác ADH đồng dạng với tam giác DBC.
b/ Chứng minh CD.BK = AH.BH.
c/ Cho biết AB=5cm, HB-4cm. Tính BK?
2. Cho hình lăng trụ đứng ABC.A'B'C' có đáy là tam giác cân ở A, AB=5cm. BC=6cm và AA' = 7cm. Gọi M, M' lần lượt là trung điểm của BC và BC.
a/ Chứng minh MM' song song với mặt phẳng ABB'A'
b/ Tính thể tích của hình lăng trụ đứng trên.