Bài 1: Định lý Talet trong tam giác

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Van Thanh

Cho hình thang ABCD (AB//CD), gọi O là giao điểm của 2 đường chéo. Qua O kẻ đường thẳng song song với 2 đáy cắt BC ở I cắt AD ở J

CMR: a) \(\frac{1}{OI}\)= \(\frac{1}{AB}\)+ \(\frac{1}{CD}\) b) \(\frac{2}{IJ}\)= \(\frac{1}{AB}\)+ \(\frac{1}{CD}\)

Ngô Kim Tuyền
2 tháng 8 2018 lúc 14:59

A B C D O J I

Vì OJ // AB, theo định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{JA}{DA}\) (1)

Vì OJ // AB, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OD}{DB}=\dfrac{OJ}{AB}\) (2)

Mà OJ // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{JA}{DA}\) (3)

Vì OI // AB, theo định lý Ta-lét ta có:

\(\dfrac{OA}{AC}=\dfrac{OJ}{CD}\) (4)

Vì OI // CD, theo hệ quả của định lý Ta-lét ta có:

\(\dfrac{OB}{DB}=\dfrac{OI}{CD}\) (5)

Từ (1), (3) \(\Rightarrow\dfrac{OB}{DB}=\dfrac{OA}{AC}\) (6)

Từ (4), (5), (6) \(\Rightarrow\dfrac{OJ}{CD}=\dfrac{OI}{CD}\)

\(\Rightarrow OJ=OI\) (7)

Ta có biểu thức : \(\dfrac{1}{AB}+\dfrac{1}{CD}\)(8)

Từ (2), (7) \(\Leftrightarrow AB=\dfrac{DB.OI}{OD}\) (9)

(5) \(CD=\dfrac{DB.OI}{OB}\) (10)

Thay (9), (10) vào biểu thức (8) ta có:

1:\(\dfrac{DB.OI}{OD}+1:\dfrac{DB.OI}{OB}\)

= \(1.\dfrac{OD}{DB.OI}+1.\dfrac{OB}{DB.OI}\)

= \(\dfrac{OD}{DB.OI}+\dfrac{OB}{DB.OI}\)

=\(\dfrac{OD+OB}{DB.OI}\)

=\(\dfrac{DB}{DB.OI}=\dfrac{1}{OI}\)

\(\Rightarrow\dfrac{1}{OI}=\dfrac{1}{AB}+\dfrac{1}{CD}\) (11)

b) Từ (7) \(\Rightarrow\) OJ = OI = \(\dfrac{1}{2}IJ\)

\(\Leftrightarrow IJ=2OI\)

\(\Leftrightarrow\dfrac{1}{OI}=\dfrac{2}{IJ}\) (12)

Từ (11), (12) \(\Rightarrow\dfrac{2}{IJ}=\dfrac{1}{AB}+\dfrac{1}{CD}\)

Rosé I love
28 tháng 1 lúc 19:10

cho mình hỏi bạn vừa trl với cái biểu thức 8 cậu lấy đâu ra


Các câu hỏi tương tự
Vân Nguyễn
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
dswat monkey
Xem chi tiết
GGtuub_bee
Xem chi tiết
Nguyen Thi Ngoc Linh
Xem chi tiết
Phạm Xuân Tùng
Xem chi tiết
Trần Anh Thơ
Xem chi tiết
Trần Vũ Minh Huy
Xem chi tiết
vũ đăng khánh
Xem chi tiết