Cho hình chóp S.ABC có đáy là tam giác đều cạnh 2a, H là trung điểm AB, (SH) ⊥ (ABC). Góc đường thẳng SB và mặt phẳng (SAC) bằng 45o. Tính SH?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh có độ dài là a, tâm của hình vuông là O. Có SA vuông góc với đáy và gócgiữa đường thẳng SD và mp(ABCD) bằng030.Gọi I, J lần lượt là trung điểm của cạnh SB và SD.
a). Tính khoảng cách từ điểm S đến mp(ABCD).
b). Chứng minh các mặt bên của hình chóp là các tam giác vuông.
c). Chứng minh: (SBD)(SAC)⊥.d). Chứng minh: IJ(SAC)⊥.
e). Tính góc giữa đường thẳng SC và mp(ABCD).
f). Tính góc giữa đường thẳng SC và mp(SAB).
g). Tính góc giữa đường thẳng SC và mp(SAD).
h). Tính góc hợp bởi hai mặt phẳng (SBD) và (ABCD).
i). Tính góc hợp bởi hai mặt phẳng (SBC) và (ABCD).
j). Tính khoảngcách từ điểm A đến mp(SBC).
k). Tính khoảng cách từ điểm A đến mp(SCD).
l). Tính khoảng cách từ điểm A đến mp(SBD).
m). Tính khoảng cách giữa hai đường thẳng chéo nhau BD và SC
Cho lăng trụ ABC.A'B'C'. Gọi I là trung điểm B'C', M là một điểm thuộc A'C', P là giao điểm của AM và AC', Q là giao điểm của B'M và A'I. Tìm vị trí điểm M để tam giác A'PQ có diện tích bằng 1/8 diện tích tam giác A'CI.
Cho tứ diện đều ABCD cạnh a. Gọi G là trọng tâm của tam giác BCD. M là trung điểm của CD. Tính góc giữa AC và BG.
Cho tứ diện đều ABCD cạnh bằng a. Gọi M là trung điểm của cạnh BC. Cắt tứ diện bởi mặt phẳng đi qua điểm M và song song với hai đường thẳng ,ABCD thì được thiết diện có diện tích là Đáp án là a2/4 nha
Cho hình chóp S.ABCD có tất cả các cạnh bằng a, đáy ABCD là hình bình hành.Gọi M,N lần lượt là trung điểm AB,SC.
a) Tìm thiết diện tạo bởi mặt phẳng (ABN) và hình chóp.Tính diện tích thiết diện
b) Chứng minh đường thẳng BN // (SMD).
c)Xác định các điểm I,J lần lượt là giao điểm của đường thẳng AN và đường thẳng MN với mặt phẳng (SBD). Chứng minh I,J,K thẳng hàng
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, cạnh SA vuông góc với mặt phẳng đáy, AB=a, SA=\(a\sqrt{3}\), BC=\(a\sqrt{2}\).
a) Chứng minh BC ⊥ (SAB).
b) Gọi E là trung điểm cạnh BC. Chứng minh BD ⊥ SE.
c) Gọi \(\alpha\) là góc giữa đường thẳng SC và mặt phẳng (SBD). Tính cos \(\alpha\).
Cho hình chóp S.ABCD có đáy là hình vuông tâm O, cạnh bằng a. SA LOABCD) và SA= a a) Chứng minh BD L(SAC) và CD L(SAD). b) Gọi điểm 1 là trung điểm của đoạn SD. Tính độ dài các đoạn thẳng SD và KC . c) Tìm hinh chiếu của đường thẳng KC lên mặt phẳng (ABCD). Tính góc giữa C và (ABCD).
Cho hình chóp S.ABCD với ABCD là hình thoi cạnh a. SAD là tam giác đều. Gọi M là một điểm thuộc cạnh AB, AM = x, (P) là mặt phẳng qua M // với (SAD). Tính diện tích thiết diện hình chóp cắt bởi mp (P).