Cho hình chóp S.ABCD có đáy là hình chữ nhật, AB =a, AD = 2a. Tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Góc giữa đường thẳng SC và mặt phẳng (ABCD) bằng 45 0 .Gọi M là trung điểm của SD. Tính theo a khoảng cách d từ điểm M đến mặt phẳng (SAC)
A. d = a 1315 89
B. d = a 1513 89
C. d = 2 a 1315 89
D. d = 2 a 1513 89
1. Cho tứ diện ABCD có AD vuông góc (ABC), AD=a√3. Góc giữa (ABC) và (DBC) bằng 60⁰. Gọi M là trung điểm AD. Tính khoảng cách từ M đến (BCD). 2. Cho hình chóp S.ABCD có SA vuông góc (ABCD), đáy ABCD là hình chữ nhật tâm O. Biết AD=2a, SA=a. Khoảng cách từ O đến (SCD) bằng
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA' = 2a, AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d từ giữa hai đường thẳng A’B’ và C’M
A . d = 2 a 2
B . d = a 2
C . d = 2 a
D . d = 3 a
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AA’ = 2a, AD = 4a. Gọi M là trung điểm của cạnh AD. Tính khoảng cách d từ giữa hai đường thẳng A’B’ và C’M.
cho hình chóp SABCD đáy ABCD là hình chữ nhật AB= a ,AD=2a,SA=SB=SC=SD=2a gọi O là giao điểm của AC và BD
a chứng minh mặt phẳng SAC vuông góc với mặt phẳng ABCD
b tính khoảng cách từ O->mặt phẳng SCD
c gọi M,N lần lượt là trung điểm của các cạnh SA và BC tính sin góc MN,CSBD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật với AB = a, AD = 2a, tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Khoảng cách từ D đến (SBC) bằng 2 a 3 . Tính khoảng cách giữa hai đường thẳng SB và AC.
A . a 10 10
B . a 10 5
C . 2 a 10 5
D . 2 a 5 5
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có AB = a, AD =2a, AA’= 3a Gọi M, N, P lần lượt là trung điểm của BC, C’D’ và DD’. Tính khoảng cách từ A đến mp (MNP).
A. 15 22 a
B. 9 11 a
C. 3 4 a
D. 15 11 a
cho hình tứ diện ABCD có AB,AC,AD đôi một vuông góc và AB=AC=AD=5cm gọi M là trung điểm BC a) chứng minh BC vuông góc ADM b) tính khoảng cách từ điểm A đén BCD C) tính góc giữa đường thẳng DM và mặt phẳng ABC
Cho lăng trụ ABCD. A’B’C’D’ có đáy ABCD là hình chữ nhật với AB =a, AD = a 3 Hình chiếu vuông góc của A' lên (ABCD) trùng với giao điểm của AC và BD. Tính khoảng cách từ điểm B' đến mặt phẳng (A’BD)
A. a 3
B. a 2
C. a 3 2
D. a 3 6