Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Pham Trong Bach

Cho hình chữ nhật ABCD, kẻ AH vuông góc với đường chéo BD

a) Chứng minh ΔAHD và ΔDCB đồng dạng và B C 2   =   D H . D B

b) Gọi S là trung điểm của BH, R là trung điểm của AH.

Chứng minh SH.BD = SR.DC

c) Gọi T là trung điểm của DC. Chứng minh tứ giác DRST là hình bình hành

d) Tính góc AST

Cao Minh Tâm
2 tháng 1 2019 lúc 5:54

a) Hai tam giác vuông AHD và BDC có ∠ADH = ∠CBD (SLT)

⇒ ΔAHD ∼ ΔDCB (g.g)

b) Ta có S, R là trung điểm của HB và AH nên SR là đường trung bình của ΔABH ⇒ SR // AB

⇒ ∠HSR = ∠HBA (đồng vị)

Mà ∠HBA = ∠D1

⇒ HSR = ∠D1

Do đó ΔSHR ∼ ΔDCB (g.g)

c) Ta có SR // AB và SR = AB/2 (cmt), TD = CD/2

mà AB = CD và AB // CD (gt)

⇒ SR // DT và SR = DT

Do đó Tứ giác DRST là hình bình hành

d) Ta có SR // AB mà AB ⊥ AD (gt) ⇒ SR ⊥ AD, lại có AH ⊥ SD (gt)

⇒ R là trực tâm của ΔSAD ⇒ DR là đường cao thứ ba nên DR ⊥ SA

Mà DR // ST (DRST là hình bình hành) ⇒ ST ⊥ SA

Vậy ∠AST = 90o


Các câu hỏi tương tự
Trịnh Hoàng Minh
Xem chi tiết
Mai Quỳnh Anh
Xem chi tiết
Nguyễn Thảo Nguyên
Xem chi tiết
Hien Nguyen
Xem chi tiết
Vũ Thị Trang
Xem chi tiết
changchan
Xem chi tiết
Nguyễn Anna
Xem chi tiết
阮芳草
Xem chi tiết
Cutii :33
Xem chi tiết