Ta thấy \(\left\{{}\begin{matrix}AB\subset\left(SAB\right)\\SB\subset\left(SAB\right)\end{matrix}\right.\)
mà \(AB\) cắt \(SB\) tại \(B\)
\(\Rightarrow d\left(AB;SB\right)=0\)
(Bạn xem lại câu hỏi đề bài)
Ta thấy \(\left\{{}\begin{matrix}AB\subset\left(SAB\right)\\SB\subset\left(SAB\right)\end{matrix}\right.\)
mà \(AB\) cắt \(SB\) tại \(B\)
\(\Rightarrow d\left(AB;SB\right)=0\)
(Bạn xem lại câu hỏi đề bài)
Cho hình chóp S.ABCD với đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm của cạnh AD, khoảng cách từ B tới mặt phẳng (SHC) bằng 2 6 a Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và D, đáy nhỏ của hình thang là CD, cạnh bên SC= a 15 Tam giác SAD là tam giác đều cạnh bằng 2a và nằm trong mặt phẳng vuông góc với đáy. Gọi H là trung điểm AD, khoảng cách từ B đến mặt phẳng (SHC) bằng 2 a 6 Tính thể tích V của khối chóp S.ABCD?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Tam giác SAD là tam giác đều và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Khoảng cách giữa 2 đường thẳng AD và SC là
Cho hình chóp S.ABCD có đáy ABCD là hình thang vuông tại A và B với AB = BC = a, AD = 2a. Cạnh bên SA vuông góc với đáy và SC tạo với (SAD) góc 30 o . Gọi G là trọng tâm tam giác SAB. Tính khoảng cách từ G đến mặt phẳng (SCD).
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a. Hình chiếu của S lên đáy ABCD trùng với trọng tâm tam giác ABD. Mặt bên (SAB) tạo với đáy góc 60 ο . Tính theo a khoảng cách từ B đến mặt phẳng (SAD)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góc với mặt phẳng đáy. Tính thể tích khối chóp S.ABCD biết rằng mặt phẳng (SBC) tạo với mặt phẳng đáy một góc 30 0
A . 2 a 3 3 3
B . 4 a 3 3 3
C . a 3 3 2
D . 2 3 a 3
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật A B = a 3 , B C = a 2 . Cạnh bên SA=a và SA vuông góc với mặt phẳng đáy. Khoảng cách giữa SB và DC bằng:
Cho hình chóp S.ABCD có đáy là hình vuông cạnh bằng 1. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy (ABCD). Tính khoảng cách từ B đến (SCD)
A. 1
B. 21 3
C. 2
D. 21 7
Cho hình chóp SABCD. ABCD là hình vuông cạnh a, tam giác SAD đều, (SAD) vuông góc với đáy. I,J là trung điểm của AD và BC. Tính khoảng cách từ a)AD đến SB b)SA đến BD
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, mặt bên SAD là tam giác đều cạnh 2a và nằm trong mặt phẳng vuông góp với mặt phẳng (ABCD). Góc giữa mặt phẳng (SBC) và mặt phẳng (ABCD) là 30 0 . Thể tích của khối chóp S.ABCD là:
A. 2 a 3 3 3
B. a 3 3 3
C. 4 a 3 3 3
D. 2 a 3 3