Đáp án C.
Ta có C B ⊥ B A ; C B ⊥ S A
⇒ C B ⊥ S A B
⇒ C B ⊥ A M mà A M ⊥ S B
⇒ A M ⊥ S B C
⇒ d A ; S B C = A M .
Đáp án C.
Ta có C B ⊥ B A ; C B ⊥ S A
⇒ C B ⊥ S A B
⇒ C B ⊥ A M mà A M ⊥ S B
⇒ A M ⊥ S B C
⇒ d A ; S B C = A M .
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A , AB = 2 a , AC = 2 a . Hình chiếu của S lên mặt phẳng (ABC) là trung điểm H của cạnh AB. Cạnh bên SC hợp với đáy (ABC) một góc 45 o . Khoảng cách từ A đến mặt phẳng (SBC) là
A. 3 a 11
B. 2 5 a 11
C. 5 a 11
D. 2 3 a 11
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại A, A B = a , A D = 2 a . Hình chiếu của S lên mặt phẳng A B C là trung điểm H của cạnh AB. Cạnh bên SC hợp với đáy A B C một góc 45 ° . Khoảng cách từ A đến mặt phẳng S B C là
A. 5 a 11
B. 2 5 a 11
C. 2 3 a 11
D. 3 a 11
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại đỉnh B với AC = 2a, BC = a. Đỉnh S cách đều các điểm A, B, C. Biết góc giữa đường thẳng SB và mặt phẳng (ABC) bằng 60 ° . Khoảng cách từ trung điểm M của SC đến mặt phẳng (SAB) bằng
A. a 39 13
B. 3 a 13 13
C. a 39 26
D. a 13 26
Cho hình chóp S . A B C có đáy A B C là tam giác vuông tại B , A B = a , B C = a 3 . Hình chiếu vuông góc của S trên mặt đáy là trung điểm của cạnh A C .Biết S B = a 2 . Tính theo a khoảng cách từ H đến mặt phẳng S A B
A. 7 a 21 3
B. a 21 7
C. a 21 3
D. 3 a 21 7
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, AB=a, BC=2a. Cạnh bên SA vuông góc với đáy và SA=a. Gọi M, N lần lượt là hình chiếu vuông góc của A lên SB, SC. Tính thể tích V của khối chóp S.AMN
A. V = a 3 36
B. V = a 3 5 15
C. V = a 3 3 18
D. V = a 3 30
Cho hình chóp S.ABC có tam giác ABC vuông tại A, AB = AC = a, I là trung điểm của SC, hình chiếu vuông góc của S lên mặt phẳng (ABC) là trung điểm H của BC, mặt phẳng (SAB) tạo với đáy 1 góc bằng 60 0 . Tính khoảng cách từ điểm I đến mặt phẳng (SAB) theo a .
A. 3 a 5
B. a 3 4
C. a 3 5
Cho hình chóp S.ABC có đáy ABC là tam giác vuông cân tại B, BC = a. Cạnh bên SA vuông góc với mặt phẳng (ABC). Gọi H, K lần lượt là hình chiếu vuông góc của A lên SB và SC. Tính thể tích của khối cầu tạo bởi mặt cầu ngoại tiếp hình chóp A.HKB.
A. 2 π a 3 .
B. π a 3 6 .
C. π a 3 2 .
D. 2 π a 3 3 .
Cho hình chóp S.ABC có đáy là tam giác ABC vuông cân ở B, A C = a 2 . SA vuông góc với mặt phẳng (ABC) và (SA)=a. Gọi G là trọng tâm của tam giác SBC. Một mặt phẳng đi qua hai điểm A, G và song song với BC cắt SB, SC lần lượt tại B’ và C’. Thể tích khối chóp S.A’B’C’ bằng:
A. 2 a 3 9
B. 2 a 3 27
C. a 3 9
D. 4 a 3 27
Cho hình chóp S.ABC có đáy là tam giác vuông cân tại B có AB=2a, SB=3a Hình chiếu vuông góc của S trên mặt phẳng đáy là trung điểm H của AB. Tính khoảng cách d từ điểm H đến MP (SBC).
A. d = a 2 3
B. d = 2 a 2 3
C. d = 4 a 2 3
D. d = a 2