ABCD là hình bình hành nên AB =CD (cạnh đối của hình bình hành) (1)
F là trung điểm của BC (theo đầu bài) nên BF = 1/2 BC (2).
E là trung điểm của AD (theo đầu bài) nên ED = 1/2 AD (3).
Từ (1), (2) và (3) suy ra BF = ED (4).
BF // ED (vì F nằm trên AB, E nằm trên AD; BC và AD là cạnh đối của hình bình hành ABCD nên BC//AD) (5).
Từ (4) và (5) suy ra BFDE là hình bình hành (2 cạnh đối song song và bằng nhau) =>BE = DF (điều phải chứng minh)
ABCD là hình bình hành nên AB =CD (cạnh đối của hình bình hành) (1)
F là trung điểm của BC (theo đầu bài) nên BF = 1/2 BC (2).
E là trung điểm của AD (theo đầu bài) nên ED = 1/2 AD (3).
Từ (1), (2) và (3) suy ra BF = ED (4).
BF // ED (vì F nằm trên AB, E nằm trên AD; BC và AD là cạnh đối của hình bình hành ABCD nên BC//AD) (5).
Từ (4) và (5) suy ra BFDE là hình bình hành (2 cạnh đối song song và bằng nhau) =>BE = DF (điều phải chứng minh)
nhớ tick nha
Ta có:
AE=DE(do e là trung điểm của AD)
BF=FC(do F là trung điểm của BC)
mà AD=BC(tính chất HBH)
Suy ra AE=FC
Xét tam giác ABE và CDF có :
Góc A= goc C(tính chất HBH)
AB=CD(tính chất HBH)
AE=FC(chứng minh trên)
Suy ra tam giác ABE=CDF
Suy ra BE=DF(c.g.c)