Bài 1 : Cho hình bình hành ABCD , qua A kẻ đường thẳng song song với BD . Nó cắt BC tại E và CD tại F . Chứng minh : AC , ED , BF đồng quy .
Bài 2 : Cho hình bình hành ABCD , M ∈ AB , N ∈ CD | AM = NC . Chứng minh : khi M và N chuyển động , đường thẳng MN luôn đi qua điểm cố định .
Cho hình bình hành ABCD, lấy M thuộc AB và N thuộc CD sao cho AM = CN
a/ CM: ABCD là hình bình hành
b/Lấy O là trung điểm . CM : M,O,N thẳng hàng
c/Vẽ đường thẳng bất kì đi qua O và cắt AD và BC tại I là K. Cm : IM//NK
•Cho hình bình hành ABCD. Gọi I, K Theo Thứ tự là trung điểm của CD, AB. Đường chéo BD cắt AI , CK theo thứ tự ở M, N. Chứng minh rằng:
a) AI //CK
b) DM=MN=NB
c) Chứng minh CM đi qua trung điểm của AD, AN đi qua trung điểm của BC.
d) Chứng minh K, O, I thẳng hàng, với O là giao của 2 đường chéo AC và BD.
cho hình bình hành ABCD (với AB>CD) Gọi M và N theo thứ tự là trung điểm của AB và CD A) Chứng minh AN=CM B) Chứng minh tứ giác AMCN là hình bình hành C) Chứng minh AM//CM
Cho hình bình hành ABCD có BC giao với AD tại O. Qua O kẻ đường thẳng bất kì cắt AB và CD theo thứ tự ở M, N. Chứng minh rằng:
a, AM = CN
b, Tứ giác MBND là hình gì? Tại sao?
c, AN // CM
Cho hình bình hành ABCD gọi O là giao điểm của 2 đường chéo AC và BD đường thẳng qua O không song song với AD và cắt AB tại M và CD tại M a) C/m M đối xứng với N qua O b)Chứng tỏ rằng tứ giác AMCN là hình bình hành
Cho hình bình hành ABCD. Gọi E, F theo thứ tự là trung điểm của AB, CD. Gọi M là giao điểm của AF và DE. N là giao điểm của BF và CE. Chứng minh rằng :
a) EMFN là hình bình hành
b) Các đường thẳng AC, EF, MN đồng quy
Các bạn giúp mình bài này với
Cho hình bình hành ABCD. Lấy trên AB và CD các đoạn thẳng AE=CF, lấy trên AD và BC các đoạn thẳng AM=CN.
Chứng minh EMFN là hình bình hành
AC cắt BD tại I. Chứng minh MN và EF cũng đi qua I.
Cho hình bình hành ABCD có M, N lần lượt là trung điểm của AB và CD.
a) Chứng minh AMCN là hình bình hành.
b) AN, MC cắt BD lần lượt tại H và I. Chứng minh: DH = HI = IB.
c) Chứng minh MN đi qua trung điểm của AC.