Ta có
1 3 x − y = 2 3 x + 3 y = 2 ⇔ y = 1 3 x − 2 3 x + 3 1 3 x − 2 3 = 2 ⇔ y = 1 3 x − 2 3 x + x − 2 = 2 ⇔ y = 1 3 x − 2 3 x = 2 ⇔ x = 2 y = 0
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (2; 0)
Đáp án: D
Ta có
1 3 x − y = 2 3 x + 3 y = 2 ⇔ y = 1 3 x − 2 3 x + 3 1 3 x − 2 3 = 2 ⇔ y = 1 3 x − 2 3 x + x − 2 = 2 ⇔ y = 1 3 x − 2 3 x = 2 ⇔ x = 2 y = 0
Vậy hệ phương trình có nghiệm duy nhất (x; y) = (2; 0)
Đáp án: D
bài 1: giải các phương trình sau :
a) x^3-5x=0 b) căn bậc 2 của x-1=3
bài 2 :
cho hệ phương trình : {2x+my;3x-y=0 (I)
a) giải hệ phương trình khi m=0
b) tìm giá trị của m để hệ (I) có nghiệm (x;y) thỏa mãn hệ thức :
x-y+m+1/m-2=-4
bài 3:giải các phương trình sau
a)5x-2/3=5x-3/2 b) 10x+3/12=1+6x+8/9 c) 2(x+3/5)=5-(13/5+x) d) 7/8x-5(x-9)=20x+1,5/6
A) Giải hệ phương trình : 3 x + y = 3 : 2 x - y = 7 B) giải phương trình : 7x²-2 x + 3 = 0 Bài 2 Cho (p) y = 2 x² (D) y = 3 x - 1 A) vẽ (p) B) tìm tọa độ giao điểm của (p) và (D) bằng phép tính
cho hệ phương trình: \(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
khi hệ phương trình có nghiệm duy nhất là (x,y) tìm m để
a) x>0 và y<0
b) biểu thức A = x^2 + y^2 đạt GTNN
Các số nguyên của m để hệ phương trình \(\left\{{}\begin{matrix}mx-y=1\\2x+my=2\end{matrix}\right.\) có nghiệm duy nhất (x;y) thỏa mãn x>0 và y<0 là
A.-1;0 B.-3;-2;-1 C.-3;-2;-1;0 D.-3;-2;-1;0;1
Bài 1 A) giải hệ phương trình X - 2 y = 7 2 x + y = 1 B) giải phương trình : x² - 6 + 5 = 0 Bài 2 Cho (p) = y = 2x² , (D) y = -x +3 A) vẽ (p) B) tìm tọa độ giao điểm của (p) và (D) bằng phép tính
Cho hệ phương trình \(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\)
Xác định giá trị của m để nghiệm (x;y) của hệ phương trình thoả điều kiện x+y=0
Bài 1 Cho hệ phương trình mx+4y=10-m và x+y=4
a, giải hệ phương trình khi m= căn 2
b, giải và biện luận hệ phương trình đã cho theo tham số m
c, trong trường hợp hệ có nghiệm duy nhất (x;y) tìm các giá trị của m để:
i, y-5x=-4. ii, x<1 và y>0
Bài 2: Cho hệ phương trình 2x+3y=m và 2x-3y=6 (m là tham số không âm)
a, giải hệ phương trình với m=3
b, tìm các giá trị của m để nghiệm (x;y) của hệ phương trình thoả mãn điều kiện x>0, y>0
cho hệ phương trình
\(\hept{\begin{cases}x-y+m=0\\\left(x+y-2\right)\left(x-2y+1\right)=0\end{cases}}\) (1)
b, với giá trị nào của m, thì hệ phương trình có duy nhất 1 nghiệm
c, tìm m để hệ (1) có 2 nghiệm (x1;y1) và (x2;y2) thỏa mãn x1.x2<0
Cho hệ phương trình
\(\hept{\begin{cases}x-3y-3=0\\x^2+y^2-2x-2y-9=0\end{cases}}\)
gọi (x1;y1) và (x2;y2) là hai nghiệm của hệ phương trình.
Giá trị biểu thức M = (x1-x2)2+(y1-y2)2 là ...
Cho hệ phương trình {x +ax = 3
ax - y = 2
a, giải hệ phương trình khi a =2
b,Tìm a để hệ phương trình có nghiệm thoả mãn x + y > 0
c,Tìm a để hệ phương trình có nghiệm thoả mãn x = √2 . y