Cho tam giác ABC vuông tại A có AB=36cm; AC=48cm.Gọi M là trung điểm của BC. Đường thẳng vuông góc với BC tại M cắt đường thẳng AC, AB theo thứ tự tại D và E.
a. Chứng minh ABC đồng dạng MDC. b. Tính các cạnh của MDC.
c. Tính độ dài EC. d. Tính độ dài đoạn thẳng EC.
e. Tính tỉ số diện tích của hai tam giác MDC và ABC .
Bài 2: Cho hình bình hành ABCD có CD = 16 cm, đường cao vẽ từ A đến cạnh CD bằng 12 cm. \
a,Tính diện tích hình bình hành ABCD.
b,Gọi M là trung điểm AB, Tính diện tích tam giác ADM.
c,DM cắt AC tại N. Chứng minh rằng DN= 2NM
d, Tính diện tích tam giác AMN.
Cho hình thang ABCD ( AB//CD, AB<CD).Qua M là trung điểm BC, kẻ đường thẳng // AD cắt CD ở E,cắt AB ở F
a) C/m AFED là hbh
b) C/m BFCE là hbh
c) C/m diện tích tam giác ADE= dtich tam giác BEC= 1/2 diện tích ABCD
Bài 3: Cho tam giác ABC nhọn, đường cao AH. Gọi M, N lần lượt là trung điểm của AB, AC. Qua B kẻ đường thẳng song song với AC cắt tia NM tạo D
a. CM tứ giác BDNC là HBH
b. Tứ giác BDNH là hình gì? Vì sao?
c. Gọi K là điểm đối xứng của H qua N. Qua N kẻ đường thẳng song song với HM cắt DK tại E. Chứng minh DE = 2EK
BT1: Cho tam giác nhọn ABC có: AB<AC. Các đường cao BD, CE cắt nhau tại H. I là trung điểm của BC, K là điểm đối xứng với H qua I. M là điểm đối xúng với H qua đường thẳng BC.a) Gọi O là trung điểm AK. CMR: O là giaoo điểm 3 đường trung trực của tam giác ABC.b) Tính tỉ số diện tích của tam giác KIO và tam giác KHA.BT2: Cho hình chữ nhật ABCD: AB>AD. Qua A kẻ đường thẳng vuông góc với BD tại E, cắt CD tại F. Qua C kẻ đường thẳng song song với AF, cắt AB tại K.a) CM: AKCF là hình bình hành.b) CM: Tam giác ADF = tam giác CBK.c) GỌi M, Q lần lượt là trung điểm của AE và BC. Qua M kẻ đường thẳng song song với AD cắt DE tại N. CM: Góc NMB = góc BQN.d) CHo AD= 8cm,Ab=12cm. Tính AE?GIÚP MIK VỚI MIK SẮP THI RÙI!!!
Cho hình chữ nhật ABCD( AB>BC). Từ B kẻ BH vuông góc với AC tại H. Lấy E sao cho H là trung điểm BE, lấy Q đối xứng với C qua H.
a) Tứ giác BCEQ là hình gì? Vì sao?
b)QE cắt DC tại M. Gọi N là hình chiếu của E trên AD, MN cắt DE tại o.CM tam giác OEM là tam giác cân
c) chứng minh rằng ADCE là hình thang cân
d) chứng minh 3 điểm N, M, H thẳng hàng
Cho tam giác ABC cân tại A có đường cao AD . Lấy điểm H thuộc đoạn
thẳng AD , gọi K là điểm đối xứng với điểm H qua điểm D
1) Tứ giác BHCK là hình gì? Vì sao?
2) Đường thẳng vuông góc với đường thẳng BC tại C cắt tia BK tại điểm M . Chứng minh rằng: KM =HC .
3) Qua điểm M kẻ đường thẳng song song với đường thẳng BC cắt tia CK tại N . Chứng minh rằng: Tứ giác BCMN là hình chữ nhật. Tính diện tích hình chữ nhật BCMN biết rằng BC = 8cm ; BH = 5 cm .
4) Đường thẳng ND cắt đoạn thẳng HC tại điểm P . Chứng minh tỉ số HP
PC không đổi khi điểm H di chuyển trên đường cao AD .
Cho tam giác ABC cân tại A. Gọi M,N lần lượt là trung điểm của 2 cạnh AB và BC.
a)Gọi D là điểm đối xứng của A qua N. CM tứ giác ABCD là hcn.
b) Lấy I là trug điểm của AC và E là điểm đx của N qua I. CM tứ giác ANCE là hthoi.
c) Đường thẳng BC cắt DM và DI lần lượt tại G và H. CM BG=CH.
d)Cho AB=6cm, AC=8cm. Tính diện tích tam giác DGH