Bài 1. Cho hình chữ nhật ABCD có AB = 12cm, BC = 5cm. Gọi H là hình chiếu của B trên AC. Tính HA, HC.
Bài 2. Cho hình bình hành ABCD. Gọi M, N lần lượt là hình chiếu của A trên BC, CD. Biết rằng AC = 13cm, MN = 12cm, tính khoảng cách từ A đến trực tâm H của tam giác AMN.
GIÚP MÌNH VỚI !!! MÌNH ĐANG CẦN GẤP !!!
Cho tam giác ABC có ba góc nhọn, biết A B = 15 c m , A C = 13 c m và đường cao A H = 12 c m . Gọi N, M lần lượt là hình chiếu vuông góc của H xuống AC và AB.
a) Chứng minh rằng ΔAHN ∼ ΔACH
b) Tính độ dài BC
c) Chứng minh ΔAMN ∼ ΔACB
d) Tính MN
1,cho tứ giác lồi ABCD có góc b = góc d =90 độ ,trên đường chéo ac lấy e sao cho góc abe=góc dbc, gọi I là trung điểm AC biết góc BAC=góc BDC,góc CBD=góc CAD.CM:
a,góc BIC=2BDC,góc CID=2CBD
b,Tam giác ABE ~ DBC
c,AC.BD=AB.DC+AD.BC
2.cho tam giác ABC;H,G,O lần lượt là trực tâm ,trọng tâm,giao điểm 3 đường trung trực,gọi E,D là trung điểm AB,Ac
a,CM:tam giác OED ~ HCB
b,tam giác GOP ~ GHP
3.cho hbh ABCD có AC>BD,gọi H,K lần lượt là hình chiếu vuông góc của c trên AD,AB
a,CH/CB=CK/CD
b,tam giác CHK ~ BCA
c,AB.AH+AD.AK=AC^2
1. CHO TAM GIÁC ABC NHỌN , ĐƯỜNG CAO AH BIẾT AB=15CM, AC=13CM, AH=12CM . GỌI N, M LẦN LƯỢT LÀ HÌNH CHIẾU VUÔNG GÓC CỦA H XUỐNG AC VÀ AB.
a, TÍNH ĐỘ DÀI BC
b, TÍNH ĐỘ DÀI MN
Cho tam giác ABC vuông tại A có AB = 6cm ,AC=8cm,đường cao AH
a) Chứng minh tam giác ABH và tam giác CBA đồng dạng
b) Tính BC , AH
c) Gọi M,N lần lượt là hình chiếu của H trên AB và AC. I là trung điểm của BC chứng minh rằng AI vuông góc với MN
Bài 1: Cho∆ABC nhọn, H là trực tâm của tam giác. Gọi M, N, P lần lượt là trung điểm của AB, BC, CA; R, S, T lần lượt là trung điểm của HA, HB, HC. CMR: RN=MT=SP.
Bài 2: Gọi O là giao điểm các đường chéo của hình thoi ABCD, E và F theo thứ tự là hình chiếu của O trên BC và CD. Tính các góc của hình thoi biết rằng EF=1/4 các đường chéo của hình thoi.
cho hình thang abcd ( ab//cd) . gọi e,f,k lần lượt là trung điểm của bd,ac,dc. gọi h là giao điểm của đường thẳng qua e vuông góc với ad và đường thẳng qua e vuông góc với bc. c/m : a) h là trực tâm của tam giác efk b) tam giác hcd cân
Bài 4. Cho tam giác ABC với trực tâm H, trọng tâm G, tâm đường tròn ngoại tiếp O. Gọi M, N lần lượt là trung điểm của BC, AC. Chứng minh rằng tam giác MON đồng dạng AHB. Từ đó chứng minh H, G, O thẳng hàng.
Bài 5. Cho tam giác ABC. Dựng ra ngoài các tam giác ABF và ACE lần lượt vuông tại B, C và đồng dạng với nhau. BE giao CF tại K. Chứng minh rằng AK ⊥ BC.
Bài 6. Cho tứ giác ABCD có hai đường chéo cắt nhau tại I thỏa mãn tam giác AID đòng dạng tam giác BIC. Kẻ IH ⊥ AD, IK ⊥ BC. M, N lần lượt là trung điểm AB, CD. Chứng minh rằng MN ⊥ HK.
Bài 7. Cho tứ giác ABCD có hai đường chéo cắt nhau tại O. Gọi M, N lần lượt là trung điểm AB, CD; H, K lần lượt là trực tâm các tam giác AOD, BOC. Chứng minh rằng MN ⊥ HK.
Bài 8. Cho tam giác ABC. Các đường cao AD, BE, CF . M thuộc tia DF , N thuộc tia DE sao cho ∠M AN = ∠BAC. Chứng minh rằng A là tâm đường tròn bàng tiếp góc D của tam giác DMN .
Bài 9. Cho tứ giác ABCD có hai đường chéo AC = BD. Về phía ngoài tứ giác dựng các tam giác cân đồng dạng AMB và CND (cân tại M, N ). Gọi P, Q lần lượt là trung điểm của AD, BC. Chứng minh rằng M N vuông góc với PQ.
Bài 10. Cho tam giác ABC. Các đường cao AD, BE, CF . Trên AB, AC lấy các điểm K, L sao cho ∠FDK = ∠EDL = 90◦. Gọi M là trung điểm KL. Chứng minh rằng AM ⊥ EF .
Mong các bạn giúp đỡ mình. Giúp được bài nào thì giúp nhé.
cho tam giác nhọn ABC có AB=15cm, AC=13cm, đường cao AH=12cm.Gọi M,N lần lượt là hình chiếu vuông góc của H xuống AB và AC
a/ tam giác AHN đồng dạng với tam giác ACH
b/ tính BC
c/ tam giác AMN đồng dạng với tam giác ACB
d/ tính MN
giúp mình với , mình cần gấp ạ