\(\left(d\right):y=x+m+4\)
\(\Rightarrow x-y+m+4=0\)
\(\Rightarrow d\left(O;\left(d\right)\right)=\dfrac{\left|0-0+m+4\right|}{\sqrt{1^2+\left(-1\right)^2}}=\sqrt{2}\)
\(\Rightarrow\dfrac{\left|m+4\right|}{\sqrt{2}}=\sqrt{2}\)
\(\Rightarrow\left|m+4\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}m+4=2\\m+4=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}m=-2\\m=-6\end{matrix}\right.\)
Vậy với \(\left[{}\begin{matrix}m=-2\\m=-6\end{matrix}\right.\) thỏa mãn đề bài