Trên \((1;+\infty)\) ta có \(x-1>0\)
\(\Rightarrow y=x+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\dfrac{1}{\left(x-1\right)}}+1=3\)
\(\Rightarrow m=y_{min}=3\) khi \(\left(x-1\right)^2=1\Rightarrow x=2\)
Trên \((1;+\infty)\) ta có \(x-1>0\)
\(\Rightarrow y=x+\dfrac{1}{x-1}=x-1+\dfrac{1}{x-1}+1\ge2\sqrt{\left(x-1\right)\dfrac{1}{\left(x-1\right)}}+1=3\)
\(\Rightarrow m=y_{min}=3\) khi \(\left(x-1\right)^2=1\Rightarrow x=2\)
Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >Cho hàm số \(f\left(x\right)=-x^2-2\left(m-1\right)x+2m-1\). Tìm tất cả các giá trị của tham số \(m\) để \(f\left(x\right)>0,\forall x\in\left(0;1\right)\).
, ( )Cho hàm số ( ) ( )2 2 1 2 1f x x m x m= − − − + − . Tìm tất cả các giá trị của tham số m để ( ) 0f x >, ( )
1) cho biểu thức f(x)=\(\dfrac{x^2+16}{2x}\) (x>0).Khi hàm số f(x) đạt giá trị nhỏ nhất thì x nằm trong khoảng nào.
a) Cho \(x\ge2\). GTNN của hàm số \(y=\dfrac{\sqrt{x-2}}{x}\)
b) GTNN của biểu thức \(f\left(x\right)=\dfrac{x}{\sqrt{x-1}}\) với x>1
Tìm giá trị lớn nhất của hàm số: y=\(\dfrac{x}{\left(x+1\right)^2}\), x>0.
Tìm tất cả các giá trị của tham số m để bất pt
a) \(\left(x+m\right)m+x>3x+4\) có tập nghiệm là \(\left(-m-2;+\infty\right)\)
b) \(m\left(x-m\right)\ge x-1\) có tập nghiệm là \((-\infty;m+1]\)
c) \(m\left(x-1\right)< 2x-3\) có nghiệm
d) \(\left(m^2+m-6\right)x\ge m+1\) có nghiệm
Cho hàm số \(y=x^2+2x+3+\left|x-a+1\right|\), có bao nhiêu giá trị nguyên của tham số a \(\in\left[-10;10\right]\) sao cho giá trị nhỏ nhất của hàm số lớn hơn 2
Tìm giá trị nhỏ nhất m của hàm số \(f\left(x\right)=\dfrac{2x^3+4}{x}\)với x>0
Cho bất phương trình \(\left(m^2-4\right)x^2+\left(m-2\right)x+1< 0\). Tìm tất cả các giá trị tham số m lm bất pt vô nghiệm có dạng \((-\infty;4]\cup[b;+\infty)\). Tính giá trị a.b
Tìm GTNN của các hàm số sau:
a) \(f\left(x\right)=5+x+\dfrac{1}{x}\left(x>4\right)\)
b) \(g\left(x\right)=\left(x+2\right)\left(3+\dfrac{1}{x}\right)\left(x>0\right)\)
c) \(h\left(x\right)=\left(x+1\right)^2+\left(\dfrac{x^2}{x+1}+2\right)^2\left(x\ne-1\right)\)