Bạn tự vẽ đồ thị.
Ta đã biết quy tắc vẽ đồ thị của hàm số \(y=f\left(\left|x\right|\right)\) là vẽ đồ thị của hàm \(y=f\left(x\right)\), sau đó bỏ phần đồ thị bên trái trục Oy và lấy đối xứng phần đồ thị bên phải qua.
\(\Rightarrow f\left(x\right)=0\) có hai nghiệm dương phân biệt thì \(f\left(\left|x\right|\right)=0\) có 4 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có 2 nghiệm trái dấu thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt, nếu \(f\left(x\right)=0\) có nghiệm kép dương thì \(f\left(\left|x\right|\right)=0\) có 2 nghiệm phân biệt.
\(f^2\left(\left|x\right|\right)+\left(m-2\right)f\left(\left|x\right|\right)+m-3=0\) (1)
\(\Leftrightarrow\left(f\left(\left|x\right|\right)-1\right)\left(f\left(\left|x\right|\right)-m+3\right)=0\)\(\Rightarrow\left[{}\begin{matrix}f\left(\left|x\right|\right)-1=0\\f\left(\left|x\right|\right)-m+3=0\left(2\right)\end{matrix}\right.\)
Xét \(f\left(x\right)-1=x^2-4x+2=0\Rightarrow\left[{}\begin{matrix}x=2+\sqrt{2}\\x=2-\sqrt{2}\end{matrix}\right.\) (3)
\(\Rightarrow f\left(x\right)-1=0\) có 2 nghiệm dương phân biệt \(\Rightarrow f\left(\left|x\right|\right)-1=0\) có 4 nghiệm phân biệt
\(\Rightarrow\) Để (1) có 6 nghiệm phân biệt thì (2) có 2 nghiệm phân biệt. Ta có các trường hợp sau:
TH1: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có 2 nghiệm trái dấu, và nghiệm dương khác nghiệm của (3).
\(\Rightarrow\left\{{}\begin{matrix}1.\left(6-m\right)< 0\\m\ne4\end{matrix}\right.\) \(\Rightarrow m>6\)
TH2: \(f\left(x\right)-m+3=0\Leftrightarrow x^2-4x-m+6=0\) có nghiệm kép dương và khác nghiệm của (3)
\(\Rightarrow\Delta'=4+m-6=0\Rightarrow m=2\) \(\Rightarrow x=2>0\) (t/m)
Vậy để pt đã cho có 6 nghiệm phân biệt thì: \(\left[{}\begin{matrix}m>6\\m=2\end{matrix}\right.\)