cho hàm số y=x2 - mx - m - 1 (m ϵ R) . Gọi S là tập hợp tất cả các giá trị của m để đồ thị đã cho cắt trục hoành tại 2 điểm phân biệt có hoành độ x1 ; x2 thỏa mãn |x1|+|x2|=4 . Tổng tất cả các phần tử của S là bao nhiêu
cho hàm số y=\(\sqrt{2x^2-2x-m}-x-1\)
có đồ thị (C)
tìm tất cả các giá trị nguyên dương của m để đồ thị (C) cắt trục hoành tại 2 điểm phân biệt
Cho hàm số y=x²-mx-3(1) a/Tìm m để đồ thị hàm số (1) cắt Õ tại điểm có hoành độ bằng 3 b/lập bảng biến thiên và vẽ đồ thị khi m=-2 c/Tìm tọa độ giao điểm (P) với đường thẳng (d)y=2x+9 d/tìm m để parabol của hàm số có đỉnh nằm trên trục Ox
Cho hàm số y = f(x) = mx + 2m − 3 có đồ thị (d). gọi A, B là hai điểm thuộc đồ thị
và có hoành độ lần lượt là −1 và 2.
1 Xác định tọa độ hai điểm A và B.
2 Tìm m để cả hai điểm A và B cùng nằm phía trên trục hoành.
3 Tìm điều kiện của m để f(x) > 0, ∀x ∈ [−1; 2]
Cho hàm số y = m x 2 − 2(m − 1)x + 1 (m ≠ 0) có đồ thị (Cm). Tịnh tiến ( C m ) qua trái 1 đơn vị ta được đồ thị hàm số ( C m ' ). Giá trị của m để giao điểm của ( C m ) và ( C m ' ) có hoành độ x = 14 thỏa mãn điều kiện nào dưới đây?
A. 1 < m < 5
B. m > 4
C. 0 < m < 2
D. −2 < m < 0
Tìm tất cả các giá trị thực của m để hai đường thẳng d: y = mx − 3 và △ : y + x = m cắt nhau tại một điểm nằm trên trục hoành.
A. m = 3
B. m = ± 3
C. m = - 3
D. m = 3
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7
B. m = 3
C. m = -7
D. m = ± 7
Cho hàm số y = 2x + m + 1. Tìm giá trị thực của tham số m để đồ thị hàm số cắt trục hoành tại điểm có hoành độ bằng 3.
A. m = 7.
B. m = 3.
C. m = -7.
D.
Cho (P): y= x2 - 2x + m - 1
a) Tìm m để (P) không cắt trục hoành
b) Tìm m để (P) cắt trục hoành tại hai điểm có hoành độ dương