\(f'\left(x\right)=2x+2\)
Gọi \(x_0\) là hoành độ tiếp điểm, do tiếp tuyến tạo với trục Ox một góc 45 độ
\(\Rightarrow\) Tiếp tuyến có hệ số góc bằng 1 hoặc -1
\(\Rightarrow\left\{{}\begin{matrix}f'\left(x_0\right)=2x_0+2=1\\f'\left(x_0\right)=2x_0+2=-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_0=-\dfrac{1}{2}\Rightarrow y_0=\dfrac{1}{4}\\x_0=-\dfrac{3}{2}\Rightarrow y_0=\dfrac{1}{4}\end{matrix}\right.\)
Có 2 tiếp tuyến thỏa mãn:
\(\left[{}\begin{matrix}y=1\left(x+\dfrac{1}{2}\right)+\dfrac{1}{4}\\y=-1\left(x+\dfrac{3}{2}\right)+\dfrac{1}{4}\end{matrix}\right.\)