Cho hàm số f(x) có đạo hàm liên tục trên 0 ; π . Biết f 0 = 2 e và f(x) luôn thỏa mãn đẳng thức f ' x + sinx . f x = cosx . e cosx , ∀ x ∈ 0 ; π . Tính I = ∫ 0 π f x dx (làm tròn đến phần trăm).
A. I ≈ 6,55
B. I ≈ 17,30
C. I ≈ 10,31
D. I ≈ 16,91
Cho hàm số y=f(x) liên tục trên R thỏa mãn f(1)=1 và ∫ 0 1 f ( x ) d x = 1 3 . Tính tích phân ∫ 0 π 2 sin 2 x . f ' ( sin x ) d x .
A. I = 4 3 .
B. I = 8 3 .
C. I = - 4 3 .
D. I = - 8 3 .
Cho hàm số f(x)>0 có đạo hàm liên tục trên 0 ; π / 3 , đồng thời thỏa mãn f'(0) = 0; f(0) = 1 và f ' ' x . f x + f x cosx 2 = f ' x 2 .Tính T = f π / 3
A.
.
B.
.
C.
.
D.
.
Cho f(x) là hàm số liên tục trên R thỏa mãn f(x) + f'(x) = x và f(0) = 1. Tính f(1).
A. 2/e
B. 1 / e
C. e
D. e / 2
Cho hàm số y = f ( x ) liên tục trên R \ { - 1 ; 0 } thỏa mãn f ( 1 ) = 2 ln 2 + 1 , x ( x + 1 ) f ' ( x ) + ( x + 2 ) f ( x ) = x ( x + 1 ) , ∀ x ∈ R \ { - 1 ; 0 } Biết f ( 2 ) = a + b ln 3 với a, b là hai số hữu tỉ. Tính T = a 2 - b



![]()
Cho hàm số y=f(x) liên tục trên R và thỏa mãn f(x) + f( π 3 - x )= 1 2 sin x cos x ( 8 cos 3 x + 1 ) , ∀ x ∈ R Biết tích phân I= ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I= a b ln c d ; a , b , c , d ∈ Z và các phân số a b ; c d là các phân số tối giản. Tính S= a 3 + a b - c + d
![]()
![]()
![]()
![]()
Cho hàm số y = f(x) liên tục và có đạo hàm trên R thỏa mãn f(2) = -2; ∫ 0 2 f ( x ) d x = 1 Tính tích phân I = ∫ 0 4 f ' ( x ) d x
A. I = -10
B. I = -5
C. I = 0
D. I = -18
Cho hàm số f(x) liên tục trên R và thỏa mãn f ( x ) + f π 3 - x = 1 3 sin x cos x ( 8 cos 3 x + 1 ) . Biết tích phân I = ∫ 0 π 3 f ( x ) d x được biểu diễn dưới dạng I = a b ln c d và các phân số là các phân số tối giản. Tính S = a 3 + a b - c + d
A. S=6
B. S=3
C. S=5
D. S=7
Cho hàm số f(x) có đạo hàm liên tục trên đoạn 0 ; π thỏa mãn: ∫ 0 π f ' x d x = ∫ 0 π cos x . f x d x = π / 2 và f π / 2 = 1 . Khi đó tích phân ∫ 0 π / 2 f x d x bằng
A.0.
B.
.
C.
.
D.
.
Cho hàm số f (x) có đạo hàm liên tục trên đoạn [0;1] thỏa mãn f(1) = 1 và ( f ' ( x ) ) 2 + 4 ( 6 x 2 - 1 ) f ( x ) = 40 x 6 - 44 x 4 + 32 x 2 - 4 Tích phân ∫ 0 1 f ( x ) d x bằng
A. 23/15
B. -17/15
C. 13/15
D. -7/15