Cho hàm số \(y=f\left(x\right)\) liên tục trên tập xác định R, và thỏa mãn điều kiện phương trình \(f'\left(x\right)=0\) có 3 nghiệm \(x=-3\) ; \(x=0\) ; \(x=2\). Xét hàm số \(y=g\left(x\right)=f\left(x^2+4x-m\right)\), tính tổng các giá trị nguyên của tham số \(m\in[-10;10]\) để phương trình \(g'\left(x\right)=0\) có đúng 5 nghiệm phân biệt .
A. -6 B. 42 C. 50 D. 6
P/s: Kì thi cuối học kỳ 2 lớp 11 trường THPT Phan Huy Chú , thành phố Hà Nội
Em xin nhờ sự giúp đỡ của quý thầy cô giáo và các bạn yêu toán, em cám ơn nhiều ạ!
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=-mx\) cắt đồ thị của hàm số \(y=x^3-3x^2-m+2\) tại 3 điểm phân biệt A, B, C sao cho AB=BC
A. \(m\in\left(-\infty;3\right)\)
B. \(m\in\left(-\infty;-1\right)\)
C. \(m\in\left(-\infty;+\infty\right)\)
D. \(m\in\left(1;+\infty\right)\)
Tìm m để hàm số:
\(y=x^3-3mx^2+6\left(m^2-2\right)x+1\) đồng biến trên \(\left(2;+\infty\right)\)
Cho hàm số :
\(y=f\left(x\right)=x^4-2mx^2+m^3-m^2\)
a) Khảo sát sự biến thiên và vẽ đồ thị của hàm số khi m = 1
b) Xác định m để đồ thị \(\left(C_m\right)\) của hàm số đã cho tiếp xúc với trục hoành tại hai điểm phân biệt
Có bao nhiêu giá trị nguyên của tham số m để phương trình \(4x\left(\sqrt{4x-m}-2\right)=x^3+\left(m-8\right)\sqrt{4x-m}\) có hai nghiệm thực phân biệt
Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y=mx-m+1\) cắt đồ thị của hàm số \(y=x^3-3x^2+x+2\) tại 3 điểm A, B, C phân biệt sao cho AB=BC
A. \(m\in\left(-\infty;0\right)\cup[4;+\infty)\)
B. \(m\in R\)
C. \(m\in\left(-\dfrac{5}{4};+\infty\right)\)
D. \(m\in\left(-2;+\infty\right)\)
Cho hàm số \(y=\dfrac{x+m}{x+1}\) (m là tham số thực) thỏa mãn \(\min\limits_{\left[1;2\right]}y+\max\limits_{\left[1;2\right]}y=\dfrac{16}{3}\). Mệnh đề nào dưới đây đúng?
A. \(m\le0\)
B. \(m>4\)
C. \(0< m\le2\)
D. \(2< m\le4\)
Cho hàm số :
\(y=\dfrac{\left(a-1\right)x^3}{3}+ax^2+\left(3a-2\right)x\)
a) Xác định a để hàm số luôn luôn đồng biến
b) Xác định a để đồ thị hàm số cắt trục hoành tại ba điểm phân biệt
c) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số ứng với \(a=\dfrac{3}{2}\)
Từ đó suy ra đồ thị của hàm số :
\(y=\left|\dfrac{x^3}{6}+\dfrac{3x^2}{2}+\dfrac{5x}{2}\right|\)
Cho hàm số :
\(y=\dfrac{3\left(x+1\right)}{x-2}\)
a) Khảo sát sự biến thiên và vẽ đồ thị (C) của hàm số
b) Viết phương trình các đường thẳng đi qua \(O\left(0;0\right)\) và tiếp xúc với (C)
c) Tìm tất cả các điểm trên (C) có tọa độ là các số nguyên