Hàm số y= f(x) xác định, liên tục trên R và đạo hàm f ' ( x ) = 2 ( x - 1 ) 2 ( 2 x + 6 ) . Khi đó hàm số f(x)
A. Đạt cực đại tại điểm x= 1
B. Đạt cực tiểu tại điểm x= -3
C. Đạt cực đại tại điểm x= -3
D. Đạt cực tiểu tại điểm x= 1
Cho hàm số f ( x ) = x 2 − 1 , k h i x ≥ 2 3 x + a , k h i x < 2 . Tìm a để f(x) liên tục tại x = 2
A. a = 3
B. a = 2
C. a = =-3
D. a = -2
Cho hàm số f(x)=x(x-1)(x-2)(x-3)(x-4)(x-5)(x-6). Số điểm cực trị của hàm số là
A. 6
B. 5
C. 4
D. 3
Cho hàm số y=f(x) 3 x - 2 x - 1 + 1 k h i x ≥ 1 2 x 2 + 5 k h i x < 1 . Giá trị 2f(1)-f(-2) là
A. 21
B. -9
C. -5
D. 20
Cho hàm số y=f(x) có đạo hàm là f ' ( x ) = ( x - 1 ) 2 ( x + 2 ) ( 3 - x ) . Khi đó số điểm cực trị hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số y=f(x) có đạo hàm là
f ' ( x ) = ( x − 1 ) 2 ( x + 2 ) 3 ( 3 − x ) . Khi đó số điểm cực trị của hàm số là
A. 0
B. 1
C. 2
D. 3
Cho hàm số f ( x ) = 1 + c o s x ( x - π ) 2 k h i x ≠ π m k h i x = π Tìm m để f(x) liên tục tại x = π
A. m = 1 4
B. m = - 1 4
C. m = 1 2
D. m = - 1 2
Cho hàm số y = f(x). Hàm số y = f ' x có đồ thị như hình bên. Biết f(-1) = 1, f - 1 e = 2 . Bất phương trình f(x) < ln(-x) + m đúng với mọi x ∈ - 1 ; - 1 e khi và chỉ khi
A. m > 2
B. m ≥ 2
C. m > 3
D. m ≥ 3
Cho hàm số y = f(x) có đạo hàm f ' ( x ) = x ( x 2 − 1 ) 2 ( x + 2 ) 3 . Khi đó số điểm cực trị của hàm số y = f x 2 là bao nhiêu?
A. 1
B. 2
C. 3
D. 4
Cho hàm f x = x + 2 2 x 3 có nguyên hàm là hàm F(x). Biết F(1)=6. Khi đó F(x) có dạng:
A. ln x - 4 x - 2 x 2 + 6
B. ln x + 4 x - 2 x 2 + 4
C. ln x + 4 x - 2 x 2 + 4
D. ln x - 4 x - 2 x 2 + 6