Cho hai đường tròn ( O ) bán kính R và (O') bán kính R' tiếp xúc ngoài với nhau tại M. Đường thằng OO' cắt ( O) tại C, Cắt (O') tại D. Tiếp tuyến chung ngoài tiếp xúc với (O) tại A và (O') tại B, tiếp tuyến chung trong cắt AB tại I. Gọi B' là giao điểm của BM và (O) , B' khác M
a. Chứng minh AB2 = 4R.R'
b. Chứng minh A , O , B thẳng hàng
c. cho biết R= 3R' tính diện tích tứ giác MOIB theo R
Cho hai đường tròn (O) và (O') cắt nhau tại A và B. Vẽ tiếp tuyến chung MN của (O) và (O') với M thuộc (O) và N thuộc (O') và A nằm trong tam giác BMN. Tiếp tuyến tại A của (O) cắt (O') tại C, MA cắt NC tại D
c/m MNDB nội tiếp
Cho đường tròn (O) và (O') cắt nhau tại hai điểm A và B. Trên đường thẳng AB lấy điểm M sao cho A nằm giữa M và B. Từ M kẻ cát tuyến MCD với đường tròn (O) và tiếp tuyến MT với đường tròn (O') (T là tiếp điểm). Chứng minh MC.MD = MT2.
Cho đường tròn 0 và một điểm P ở ngoài đường tròn. Kẻ 2 tiếp tuyến PA, PB với đường tròn O( A,B là tiếp điểm) PO cắt đường tròn tại K và I ( K nằm giữa P và (O) và cắt AB tại H. Gọi D là điểm đối xứng của B qua O, C là giao điểm của PD và đường tròn (O).
a, C/m tứ giác BHCP nội tiếp
b, C/m AC vuông góc CH
c, Đường tròn ngoại tiếp tam giác ACH cắt IC tại M. Tia AM cắt IB tại Q. C/m M là trung điểm AQ
d, giả sử góc BDC = 45 độ tính diện tích tam giác PBD phần nằm ngoài đường tròn O theo R
Cho đường tròn (O) đường kính AB. Vẽ tiếp tuyến Ax của đường tròn (O). Trên cùng một nửa mặt
phẳng bờ AB có chứa tia Ax, lấy điểm M thuộc (0) (M khác A, M khác B sao cho MA > MB). Tiếp
tuyến của đường tròn (O) tại M cắt tia Ax tại E.
a) Chứng minh: 4 điểm A, E, M, O cùng thuộc một đường tròn
b) Gọi I là giao điểm của OE và AM. Chứng minh: OI.OE = R? và OE // MB
c) Gọi F là giao điểm của EB với đường tròn (O). Chứng minh: EFM = EMB
CẦN GẤP Ạ!!!
Cho tam giác ABC cân tại A nội tiếp đường tròn (O). Các tiếp tuyến tại A và B của đường tròn (O) cắt nhau tại M. 1) Chứng minh bốn điểm M, B, O, A cùng thuộc một đường tròn và OA vuông góc BC 2) MC cắt đường tròn (O) tại D (D khác C) và tia BD cắt MA tại N. Chứng minh NA2 = ND.NB và N trung điểm của AM 3) Kẻ đường kính AK của đường tròn (O), DK cắt BC tại E. Tính EC/BC.
cho đường tròn tâm (O),bán kính OA =6cm , Gọi H là trung điểm cuả OA, đường thẳng vuông góc với OA tại H cắt đường tròn tâm (O) tại B VÀ C . kẻ tiếp tuyến với đường tròn (O) tại B và C . Kẻ tiếp tuyến với đường tròn (O) tại B cắt đường thẳng OA tại M.
a) Tính độ dài OA tại M
b) Tứ giác OBAC là hình gì ? vì sao?
c) Chứng minh MC là tiếp tuyến của đường tròn (O).
Cho 2 đường tròn (O;3cm) và (O'1cm) tiếp xúc ngoài tại A, 1 góc vuông xAy quay quanh A: Ax cắt (O)={B}; Ay cắt (O')= {C}
a) c/m OB //O'C và các tiếp tuyến ở B và C ở mỗi đường tròn // với nhau
b) BC cắt OO'={I}. c/m I cố định
c) Cho BC = 6cm. Tính IB, IC