Để các biểu thức có nghĩa thì a;b dương
Đặt \(\left(\sqrt{a};\sqrt{b}\right)=\left(x;y\right)>0\)
\(\Rightarrow x+y=xy\le\frac{1}{4}\left(x+y\right)^2\Rightarrow x+y\ge4\Rightarrow xy\ge4\)
\(A=x^2+y^2+\frac{xy}{x^2+y^2}=\frac{1}{16}\left(x^2+y^2\right)+\frac{xy}{x^2+y^2}+\frac{15}{16}\left(x^2+y^2\right)\)
\(A\ge2\sqrt{\frac{xy\left(x^2+y^2\right)}{16\left(x^2+y^2\right)}}+\frac{15}{8}xy=\frac{1}{2}\sqrt{xy}+\frac{15}{8}xy\ge\frac{1}{2}\sqrt{4}+\frac{15}{8}.4=\frac{17}{2}\)
\(A_{min}=\frac{17}{2}\) khi \(x=y=2\) hay \(a=b=4\)